

Actuator Line

Ein umfangreiches Produktportfolio für lineare und nichtlineare Bewegungen für alle Ansprüche.

teilweisen, vollen oder erweiterten Auszug auf bis zu 200% der Schienenlänge.

Actuator Line

Linearachsen mit verschiedenen Schienenkonfigurationen und Antrieben Verfügbar mit Riemen-, Spindel- oder Zahnstangen- und Ritzelantrieb für unterschiedliche Anforderungen in Bezug auf Präzision, Geschwindigkeit und Führungsschienen. Rollen oder Kugelumlaufsysteme für die unterschiedlichsten Anforderungen hinsichtlich Belastung oder Umgebungsbedingungen.

Ein globaler Anbieter anwendungsspezifischer Lösungen für Linearbewegungen

Actuator System Line

Mehrachssysteme zur industriellen Automatisierung

Sie finden Änwendungen in zahlreichen Industriebereichen: Von Servosystemen für Maschinen bis hin zu hochpräzisen Montagesystemen, Verpackungsanlagen und Produktionslinien mit hohen Zyklenzahlen und Geschwindigkeiten. Die Linie hat sich aus der Aktuator Line Serie entwickelt, um den Bedürfnissen unserer Kunden gerecht zu werden.

Inhalt

Plus System

Technische Merkmale - Überblick

1 ELM Serie	
Beschreibung ELM Serie	PLS-2
Aufbau des Systems	PLS-3
Führungssystem	PLS-4
ELM 50 SP - ELM 50 CI	PLS-5
ELM 65 SP - ELM 65 CI	PLS-6
ELM 80 SP - ELM 80 CI	PLS-7
ELM 110 SP - ELM 110 CI	PLS-8
Schmierung, Planetengetriebe	PLS-9
Zapfen	PLS-10
Hohlwellen	PLS-11
Lineareinheiten im Paralleleinsatz, Zubehör	PLS-12
Bestellschlüssel	PLS-14
2 ROBOT Serie	
Beschreibung ROBOT Serie	PLS-15
Aufbau des System	PLS-16
Führungssysteme	PLS-17
ROBOT 100 SP	PLS-18
R0B0T 100 SP-2C	PLS-19
ROBOT 100 CE	PLS-20
ROBOT 100 CE-2C	PLS-21
ROBOT 130 SP	PLS-22
R0B0T 130 SP-2C	PLS-23
ROBOT 130 CE	PLS-24
R0B0T 130 CE-2C	PLS-25
ROBOT 160 SP	PLS-26
R0B0T 160 SP-2C	PLS-27
ROBOT 160 CE	PLS-28
ROBOT 160 CE-2C	PLS-29
ROBOT 220 SP	PLS-30
R0B0T 220 SP-2C	PLS-31
Schmierung, Planetengetriebe	PLS-32
Zapfen	PLS-33
Hohlwellen, Zubehör	PLS-34
Bestellschlüssel	PLS-39
3 SC Serie	
Beschreibung SC Serie	PLS-40
Aufbau des Systems	PLS-41
Führungssystem	PLS-42
SC 65 SP	PLS-43
SC 130 SP	PLS-44
SC 160 SP	PLS-45
Schmierung, Planetengetriebe	PLS-46
Zapfen, Hohlwelle	PLS-47
Zubehör	PLS-48
Bestellschlüssel	PLS-51
Mehrachsensysteme	PLS-52

Clean Room System

1 ONE Serie

Beschreibung ONE Serie	CRS-2
Aufbau des Systems	CRS-3
Lineareinheiten der ONE Serie	CRS-4
ONE 50	CRS-5
ONE 65	CRS-6
ONE 80	CRS-6
ONE 110	CRS-7
Planetengetriebe	CRS-8
Zubehör	CRS-9
Bestellschlüssel	CRS-1

Smart System

1 E-SMART Serie

Beschreibung E-SMART Serie	SS-2
Aufbau des Systems	SS-3
Führungssystem	SS-4
E-SMART 30 SP2	SS-5
E-SMART 50 SP1 - SP2 - SP3	SS-6
E-SMART 80 SP1 - SP2	SS-7
E-SMART 80 SP3 - SP4	SS-8
E-SMART 100 SP1 - SP2	SS-9
E-SMART 100 SP3 - SP4	SS-10
Schmierung	SS-11
Zapfen, Motoranschluss	SS-12
Lineareinheiten im Paralleleinsatz, Zubehör	SS-13
Bestellschlüssel	SS-16

2 R-SMART Serie

Describing n-Swant Selle	33-17
Aufbau des Systems	SS-18
Führungssystem	SS-19
R-SMART 120 SP4 - SP6	SS-20
R-SMART 160 SP4 - SP6	SS-21
R-SMART 220 SP4 - SP6	SS-22
Schmierung	SS-23
Zapfen, Motoranschluss	SS-24
Zubehör	SS-25
Bestellschlüssel	SS-29

3 S-SMART Serie

Mehrachsensystem

D-OIVIANT OFFIC	
Beschreibung S-SMART Serie	SS-30
Aufbau des Systems	SS-31
Führungssystem	SS-32
S-SMART 50 SP	SS-33
S-SMART 65 SP	SS-34
S-SMART 80 SP	SS-35
Schmierung	SS-36
Zapfen, Motoranschluss	SS-37
Zubehör	SS-38
Bestellschlüssel	SS-41

SS-42

Eco System

1

ECO Serie	
Beschreibung ECO Serie	ES-2
Aufbau des Systems	ES-3
Führungssystem	ES-4
ECO 60 SP2 - ECO 60 CI	ES-5
ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI	ES-6
ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI	ES-7
Schmierung	ES-8
Zapfen, Hohlwellen	ES-9
Lineareinheiten im Paralleleinsatz, Zubehör	ES-10
Bestellschlüssel	ES-13
Mehrachsensystem	FS-14

Uniline System

Beschreibung UNILINE A Serie Aufbau des Systems A40 A55 A75 Schmierung Zubehör Bestellschlüssel	US-2 US-3 US-4 US-6 US-8 US-10 US-11
Beschreibung UNILINE C Serie Aufbau des Systems C55 C75 Schmierung Zubehör Bestellschlüssel	US-16 US-17 US-18 US-20 US-22 US-23 US-26
Buniline E Serie Beschreibung UNILINE E Serie Aufbau des Systems E55 E75 Schmierung Zubehör Bestellschlüssel	US-28 US-29 US-30 US-32 US-34 US-35 US-38
Huniline ED Serie Beschreibung UNILINE ED Serie Aufbau des Systems ED75 Schmierung Zubehör Bestellschlüssel	US-40 US-41 US-42 US-44 US-45 US-48
5 Uniline H Serie Beschreibung UNILINE H Serie Aufbau des Systems	US-50 US-51

H40	US-52
H55	US-53
H75	US-54
Schmierung	US-55
Zubehör	US-56
Bestellschlüssel	US-58
6 Riemenspannung	US-59
7 Montagehinweise	US-60

Modline

1 MCR/MCH Serie	
Beschreibung MCR/MCH	ML-3
Aufbau des Systems	ML-4
Führungssystem	ML-5
MCR 65	ML-6
MCH 65	ML-7
MCR 80	ML-8
MCH 80	ML-9
MCR 105	ML-10
MCH 105	ML-11
Lineareinheiten im Paralleleinsatz, Zubehör	ML-12
Einsetzbare Muttern und Platten	ML-13
Sensorhalterungen	ML-14
Bestellschlüssel	ML-15
2 TCR/TCS Serie	
Beschreibung TCR/TCS	ML-17
Aufbau des Systems	ML-18
Führungssystem	ML-19
TCR 140	ML-20
TCS 140	ML-21
TCR 170	ML-22
TCS 170	ML-23
TCR 200	ML-24
TCS 200	ML-25
TCR 220	ML-26
TCS 220	ML-27
TCR 230	ML-28
TCS 230	ML-29
TCR 280	ML-30 ML-31
TCS 280 TCR 360	ML-32
TCS 360	ML-33
Zapfen	ML-34
Zubehör	ML-35
Sensorhalterungen	ML-36
Ausrichtungsmuttern	ML-37
Bestellschlüssel	ML-38
3 ZCR/ZCH Serie	
Beschreibung ZCR/ZCH	ML-40
Aufbau des Systems	ML-4
Führungssystem	ML-42
ZCH 60	ML-43
7CR 90	MI -4/

ZCH 90 ZCR 100 ZCH 100 ZCR 170 ZCH 170 ZCR 220	ML-45 ML-46 ML-47 ML-48 ML-49 ML-50
ZCH 220	ML-51
Zapfen Zubehör Ausrichtungsmuttern Bestellschlüssel	ML-52 ML-53 ML-54 ML-56
4 ZMCH Serie	
Beschreibung ZMCH	ML-57
Aufbau des Systems	ML-58
Führungssystem	ML-59
ZMCH 105	ML-60
Zapfen	ML-61
Zubehör	ML-62
Bestellschlüssel	ML-63
Mehrachsensysteme	ML-64

Precision System

1 TH Serie	
Beschreibung TH Serie	PS-2
Aufbau des Systems	PS-3
TH 70 SP2	PS-4
TH 70 SP4	PS-5
TH 90 SP2	PS-6
TH 90 SP4	PS-7
TH 110 SP2	PS-8
TH 110 SP4	PS-9
TH 145 SP2	PS-10
TH 145 SP4	PS-11
Abmessungen Motoranbau	PS-12
Schmierung	PS-13
Kritische Geschwindigkeit	PS-14
Zubehör	PS-15
Bestellschlüssel	PS-21
2 TT Serie	
Beschreibung TT Serie	PS-22
Aufbau des Systems	PS-23
TT 100	PS-24
TT 155	PS-26
TT 225	PS-28
TT 310	PS-30
Schmierung	PS-32
Prüfzertifikat	PS-33
Kritische Geschwindigkeit	PS-35
Zubehör	PS-36
Bestellschlüssel	PS-40
3 TV Serie	
Beschreibung TV Serie	PS-41
Aufbau des Systems	PS-42
TV 60	PS-43
TV 80	PS-44
TV 110	PS-45
Schmierung	PS-46
Kritische Geschwindigkeit	PS-47
Zubehör	PS-48
Bestellschlüssel	PS-50
4 TVS Serie	
Beschreibung TVS Serie	PS-51
Aufbau des Systems	PS-52
Führungssystem	PS-53
TVS 170	PS-54
TVS 220	PS-55
Schmierung	PS-56
Kritische Geschwindigkeit	PS-57
Zubehör, Ausrichtungsmuttern	PS-58
Profil-Ankerbügel	PS-59
Bestellschlüssel	PS-60
Mehrachsensystem	PS-61

Tecline

-					\sim	-	
-	111				1.0	100	^
	$P\Delta$	K/	PL	-	~ L		_
	PA	W 1/		v	U	, , ,	u

Mehrachsensysteme

Beschreibung PAR/PAS	TL-3
Aufbau des Systems	TL-4
Führungssystem	TL-5
PAS 118	TL-6
PAS 140	TL-7
PAR 170	TL-8
PAS 170	TL-9
PAR 200	TL-10
PAS 200	TL-11
PAR 200P	TL-12
PAS 200P	TL-13
PAR 220	TL-14
PAS 220	TL-15
PAR 230	TL-16
PAS 230	TL-17
PAR 280	TL-18
PAS 280	TL-19
PAR 280P	TL-20
PAS 280P	TL-21
PAR 360	TL-22
PAS 360	TL-23
PAR 170/90	TL-24
PAS 170/90	TL-25
PAR 200/100	TL-26
PAS 200/100	TL-27
PAR 200/100P	TL-28
PAS 200/100P	TL-29
PAR 220/170	TL-30
PAS 220/170	TL-31
PAR 280/200	TL-32
PAS 280/200	TL-33
PAR 280/200P	TL-34
PAS 280/200P	TL-35
PAR 280/200E	TL-36
PAS 280/200E	TL-37
PAR 280/220	TL-38
PAS 280/220	TL-39
PAR 360/220	TL-40
PAS 360/220	TL-41
PAR 360/280	TL-42
PAS 360/280	TL-43
Profil-Spezifikationen	TL-44
Zubehör, Tabelle zur Auswahl des maximalen Drehmoments	TL-48
Anschlusswellen	TL-49
Absturzsicherung mit pneumatischem Bremssystem	TL-50
Sicherungsstift (Stopperzylinder)	TL-51
Profil-Ankerbügel	TL-52
L-förmige Halterung	TL-53
Endstücke für die Profile	TL-56
Gewindeeinsätze für kleine und mittlere Profile	TL-57
Gewindeeinsätze für Kleine und Influere Frome	TL-58
Vorauswahl-Tabelle (1-2-3-Achsen)	TL-60
Bestellschlüssel	TL-62
บองเออกแนงงิด	11-02

TL-63

Speedy Rail A

1 SAB Serie	
Beschreibung SAB	SRA-2
Aufbau des Systems	SRA-3
Führungssystem	SRA-4
SAB 60V	SRA-5
SAB 120VX	SRA-6
SAB 120VZ	SRA-7
SAB 120CX	SRA-8
SAB 120CZ	SRA-9
SAB 180V	SRA-10
SAB 180C	SRA-1
SAB 250C	SRA-12
Zapfen	SRA-13
Hohlwellen, Lineareinheiten im Paralleleinsatz	SRA-14
Zubehör	SRA-1
Bestellschlüssel	SRA-17
2 ZSY Serie	
Beschreibung ZSY	SRA-18
Aufbau des Systems	SRA-19
Führungssystem	SRA-20
ZSY 180V	SRA-2
Antriebskopf, Adapterflansche	SRA-22
Zubehör	SRA-23
Bestellschlüssel	SRA-2
3 SAR Serie	
Beschreibung SAR	SRA-2
Aufbau des Systems	SRA-28
Führungssystem	SRA-29
SAR 120V	SRA-30
SAR 120C	SRA-3
SAR 180V	SRA-3
SAR 180C	SRA-33
SAR 250C	SRA-34
Zapfen, Zubehör	SRA-3
Bestellschlüssel	SRA-3
Otationing Delegations and Laborations	

Statische Belastung und Lebensdauer	SL-2
Statische Belastung Uniline System	SL-4
Anfragehilfe	SL-9

Vorauswahl Übersicht

Anwendungsfokus	Antriebssystem	Querschnitt
Max. Geschwindigkeit von 4 bis 15 [m/s] Max. Beschleunigung von 10 bis 50 [m/s²] Hub bis zu 10 m	Ongongongo Riemen	Quadratisch
		Rechteckig
Hohe Präzision bis zu ± 0,005 [mm]		Anderer Querschnitt Quadratisch
Hub bis zu 3,5 m	Kugelgewinde	Rechteckig
Schwere Lasten bis zu 4.000 kg Beliebig langer Hub Mehrere unabhängige Laufwagen	Zahnstange und Ritzel	Rechteckig
		Anderer Querschnitt Quadratisch
Vertikale Befestigung Profil-Bewegung	Tour O pur	Rechteckig
* Ontimale Zuverlässinkeit in schmutzigen Umgebungen durch Rollen, die	<u>a</u> Ω-Riemen	Rechteckig Anderer Querschnitt

^{*} Optimale Zuverlässigkeit in schmutzigen Umgebungen durch Rollen, die mit Kunststoff-Verbundmaterial beschichtet sind

Schutz			
	Produk	Produkt	
	Plus System		ELM
Geschützt	Modline	To	MCR/MCH mit Schutz
	Eco System		ECO
Halbgeschützt	Modline	10	MCR/MCH
	Uniline System	To I	UNILINE
Offen	Smart System	6	E-SMART
Geschützt mit Absaugung	Clean Room System	7	ONE
Halbgeschützt	Plus System		ROBOT
0"	Smart System	e = = 0	R-SMART
Offen	Modline		TCR/TCS
Offen*	Speedy Rail A		SAB
Halbgeschützt	Precision System		TV TVS TT TH
0.00	Tecline	1	PAS
Offen	Tecline	100	PAR
Offen*	Speedy Rail A		SAR
Halbgeschützt	Smart System	1012	S-SMART
Halbgeschützt	Plus System		SC
Offen	Modline	P	ZCR/ZCH
Offen*	Speedy Rail A	-	ZSY

Technische Merkmale - Überblick // 🗸

Referenz			Fühı	Führung		Antrieb	Voyvesianesshut	
Pi	roduktfamilie	Produkt	Kugelumlauf	Rollenläufer	Zahnriemen	Kugelgewinde Zahnstange	Korrosionsschutz	Schutz
		ELM					• •	Geschützt
Plus System		ROBOT					•	Halbgeschützt
		SC			paor O paor		•	Halbgeschützt
Clean Room System	7	ONE			Onnanna O		•	Geschützt mit Absaugung
		E-SMART						
Smart System		R-SMART						
	Jein	S-SMART			band O pand			Halbgeschützt
Eco System		ECO			Onnnnnnno			Halbgeschützt
Uniline System	To large	A/C/E/ED/H			Onnnnnnno			Halbgeschützt
		MCR MCH			Onnnnnnno		•	Halbgeschützt
Modling	To .	TCR TCS			Onnonnon		•	
Modline	þ	ZCR ZCH			paga (O) paga		•	
	Ÿ	ZMCH			band O pand		•	

Die angegebenen Werte sind Standardwerte.

* Zum Realisieren längerer Verfahrwege / Hübe sind die Linearachsen in zusammengesetzter Ausführung (Stoßversion) lieferbar.

C R S

S S

E S

Technische Merkmale - Überblick // ~

Referenz			Führung		Antrieb			Korrosionsschutz	Schutz
P	Produktfamilie		Kugelumlauf	Rollenläufer	Zahnriemen	Kugelgewinde	Zahnstange		Schutz
		TH				<i>un</i> [] <i>m</i>			Halbgeschützt
Precision		TT				<i>IIII</i>			Halbgeschützt
System		TV				<i>IIII</i>			Halbgeschützt
		TVS				<u>un[]m</u>		•	Halbgeschützt
Tecline	100	PAR PAS					<u> </u>	•	
		SAB							
Speedy Rail A	4	ZSY			baad Oacal				
		SAR					<u> </u>		

Die angegebenen Werte sind Standardwerte.

* Zum Realisieren längerer Verfahrwege / Hübe sind die Linearachsen in zusammengesetzter Ausführung (Stoßversion) lieferbar.

		Max. Belastung pro Laufwagen [N]		Max. statisches Moment pro Laufwagen [Nm]		Max. Fahrgesch-	Max. Beschleunig-	Wiederholg- enauigkeit	Max. Weg bzw. Hub (pro System)	
a. 6.33	F _x	F _y	F _z	M _x	M _y	M _z	windigkeit [m/s]	ung [m/s²]	[mm]	[mm]
70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500
100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000
60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000
170-220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500
118-140-170- 200-220-230- 280-360	10989	386400	386400	65688	150310	150310	4	10	± 0,05	10800*
60-120- 180-250	4565	3620	3620	372	362	362	15	10	± 0,2	7150
180	4980	2300	2600	188	806	713	8	8	± 0,2	6640
120-180-250	3598	3620	3620	372	453	453	3	10	± 0,15	7150*

Plus System

ELM Serie /

Beschreibung ELM Serie

Abb. 1

ELM

Diese äußerst vielseitige Hauptbaureihe von Rollon umfasst vollständig geschützte Linearachsen mit Zahnriemenantrieb.

Die ELM-Lineareinheiten sind in vier Baugrößen von 50 bis 110 mm lieferbar. Sie verfügen über ein selbsttragendendes Profil aus stranggepresstem, eloxiertem Aluminium. Die Antriebskraft wird durch einen stahlverstärkten Zahnriemen aus Polyurethan übertragen. Die präzise Bewegung des Laufwagens erfolgt durch Linearführungen oder durch ein optionales Laufrollensystem.

Ein Abdeckriemen aus Polyurethan schützt den Riemenantrieb und das Linearführungssystem vor Staub, Schmutz, Fremdkörpern, Flüssigkeiten und anderen Verunreinigungen. Diese Bauweise vermeidet die Schwächen anderer Dichtungssysteme, wie zum Beispiel Stahlriemen.

Die für die Linearbewegung verwendeten Komponenten, wie Schmierstoffreservoir, Linearführungswagen und Doppellippendichtungen garantieren ein wartungsarmes System. Die eingesetzten Rollen, Lager und Antriebswellen sind außerordentlich stabil ausgeführt. Die Linearachsen der Baureihe ELM eignen sich besonders für Anwendungen in sehr aggressiven Betriebsumgebungen, die darüber hinaus schnelle Arbeitszyklen und eine hohe Wiederholgenauigkeit verlangen.

Korrosionsgeschützte Version

Für Anwendungen in rauen Umgebungen bzw. bei häufigem Wasserkontakt sind alle Linearachsen des Plus Systems mit Edelstahlelementen erhältlich.

Die Lineareinheiten des Plus Systems werden aus stranggepresstem, eloxiertem und korrosionsbeständigem Aluminium der Legierungen 6060 und 6082 gefertigt und umschließen Lager, Linearführungen, Muttern und Schrauben aus kohlenstoffarmem Stahl SS AISI 303 und 404C. Dadurch wird Korrosion aufgrund von Feuchtigkeit in den jeweiligen Betriebsumgebungen verhindert bzw. verzögert.

Durch geeignete Oberflächenbehandlungen, kombiniert mit einem Schmiersystem, das Schmiermittel mit FDA-Zulassung verwendet, können die Linearachsen in hochempfindlichen und kritischen Anwendungen eingesetzt werden. Dazu gehört die Lebensmittel- und Pharmaindustrie, wo eine Produktkontamination ausgeschlossen werden muss.

- Innere Bauteile aus Edelstahl
- Stranggepresstes, eloxiertes Aluminium 6060 und 6082, korrosionsgeschützt
- Linearführungen, Muttern, Schrauben und Komponenten aus kohlenstoffarmem Stahl SS AISI 303 und 404C
- Schmiermittel mit FDA-Zulassung

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der Serie ELM eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Die Abmessungen sind entsprechend der Norm EN 755-9 toleriert. Das verwendete Material ist eloxiertes Aluminium der Legierung 6060. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebsriemen

In den Lineareinheiten der Serie ELM werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens könnendie folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen			
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15			
Dharibaliada Financia for										

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz- temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 $^{ ext{-9}}$	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 3

Mechanische Eigenschaften

 Rm
 Rp (02)
 A
 HB

 \frac{N}{mm^2}
 \frac{N}{mm^2}
 \%

 205
 165
 10
 60-80

Laufwagen

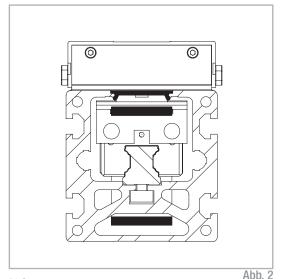
Der Laufwagen der Lineareinheiten der Serie ELM besteht aus eloxiertem Aluminium. Die Abmessungen variieren entsprechend der verschiedenen Typen. Er besteht aus drei Einzelteilen, um das Durchlaufen des Schutzriemens zu ermöglichen. In den Front- und Seitenteilen des Laufwagens sind Bürstendichtungen eingesetzt, die zusätzlichen Schutz bieten gegen das Eindringen von Schmutz. Die Gewinde der Befestigungsbohrungen sind mit Stahleinsätzen versehen.

Abdeckriemen

Die Lineareinheiten der Serie ELM sind mit einem Polyurethan-Riemen ausgestattet, der alle im Profilinnern liegenden mechanischen Teile vor Staub und Fremdkörpern schützt. Der Abdeckriemen wird durch Kugellager geführt, die sich im Innern des Laufwagens befinden. Das ermöglicht ein Durchlaufen des Abdeckriemens durch den Laufwagen mit geringster Reibung.

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigungen. Lineareinheiten der ELM Serie werden mit zwei Führungssystemen angeboten:

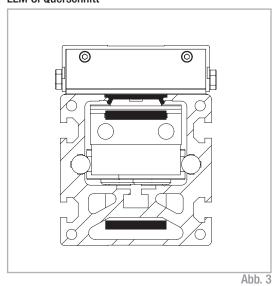

ELM...SP mit Kugelumlauf-Linearführungen

- Eine Kugelumlauf-Linearführung mit Tragzahlen für hohe Belastungen wird in der dafür vorgesehenen Nut im Innern des Aluminiumprofils befestigt.
- Der Laufwagen der Lineareinheit wird auf zwei vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- An den Stirnseiten der Linearführungswagen sind Schmierstoffreservoirs angebracht. Diese geben kontinuierlich Schmierstoff an die Kugelreihen ab und ermöglichen so eine Langzeitschmierung.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Wartungsarm (abhängig vom Anwendungsfall)
- Reduzierte Laufgeräusche
- Hohe Laufruhe

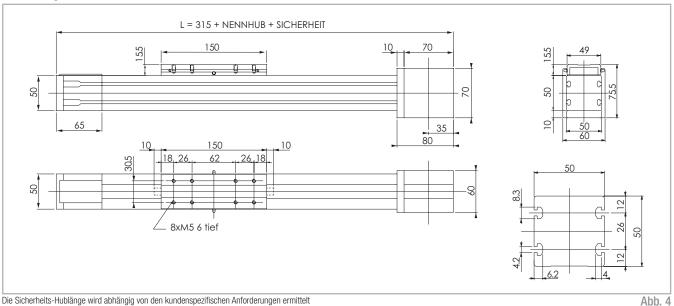
ELM SP Querschnitt


ELM...Cl mit Laufrollenführung

- Zwei Rundstahlwellen aus gehärtetem Stahl (58/60HRC) werden in die dafür vorgesehenen Nuten im Innern des Aluminiumprofils eingestemmt.
- Im Laufwagen sind sechs doppelreihig Kugel gelagerte Laufrollenmit gotischem Laufbahnprofil montiert. Dadurch wird je Laufrolle ein Zweipunkt-Kontakt mit den Rundstahlwellen hergestellt, der eine Kraftaufnahme aus allen Richtungen erlaubt.
- Die sechs Laufrollen sind auf Stahlbolzen im Laufwagen gelagert, zwei davon exzentrisch, um das System spielfrei einstellen zu können.
- Um die Laufbahnen sauber und geschmiert zu halten, sind an den Laufwagenenden Fließfett getränkte Filzstücke eingesetzt.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Gute Positioniergenauigkeit
- Hohe Laufruhe
- Wartungsarm (abhängig vom Anwendungsfall)


ELM CI Querschnitt

PLS-4

ELM 50 SP - ELM 50 CI

Abmessungen ELM 50 SP - ELM 50 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

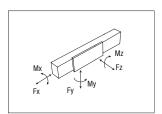
Technische Daten

	Ty	/p
	ELM 50 SP	ELM 50 CI
Maximale Hublänge [mm]	3700	6000*1
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05
Maximale Geschwindigkeit [m/s]	4,0	1,5
Maximale Beschleunigung [m/s²]	50	1,5
Zahnriemen-Typ	22 AT 5	22 AT 5
Typ Zahnriemenscheibe	Z 23	Z 23
Riemenscheibendurchmesser [mm]	36,61	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115	115
Gewicht des Laufwagens [kg]	0,4	0,5
Gewicht Hub Null [kg]	1,8	1,7
Gewicht je 100 mm Hub [kg]	0,4	0,3
Losbrechmoment [Nm]	0,4	0,4
Riemenscheiben-Trägheitsmoment [g mm²]	19810	19810
Schienengröße [mm]	12 mini	Ø6

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 50	0,025	0,031	0,056

Tab. 5


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

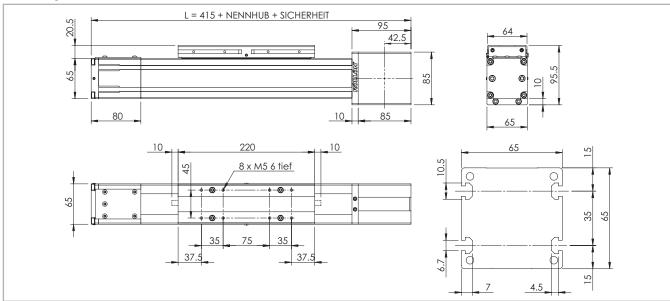
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ELM 50	22 AT 5	22	0,072

Tab. 6

Riemenlänge (mm) = 2 x L - 130 (SP und Cl Modelle)

ELM 50 - Tragzahlen

Тур	F [1	: x V]	F [t	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 50 SP	809	508	7060	6350	7060	46.2	233	233
ELM 50 CI	809	624	1648	3072	1110	19,1	27	45,7


Tab. 4

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2 ff

^{*1)} Hublängen bis 9000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

ELM 65 SP - ELM 65 CI

Abmessungen ELM 65 SP - ELM 65 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 5

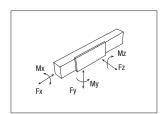
Technische Daten

	Тур			
	ELM 65 SP	ELM 65 CI		
Maximale Hublänge [mm]*1	6000	6000		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	5,0	1,5		
Maximale Beschleunigung [m/s²]	50	1,5		
Zahnriemen-Typ	32 AT 5	32 AT 5		
Typ Zahnriemenscheibe	Z 32	Z 32		
Riemenscheibendurchmesser [mm]	50,93	50,93		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160	160		
Gewicht des Laufwagens [kg]	1,1	1,0		
Gewicht Hub Null [kg]	3,5	3,3		
Gewicht je 100 mm Hub [kg]	0,6	0,5		
Losbrechmoment [Nm]	1,5	1,5		
Riemenscheiben-Trägheitsmoment [g mm²]	117200	117200		
Schienengröße [mm]	15	Ø6		
*1) Hublängen bis 11000 mm als Stoßversion möglich		Tab. 8		

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 65	0,060	0,086	0,146
			Tab. 9

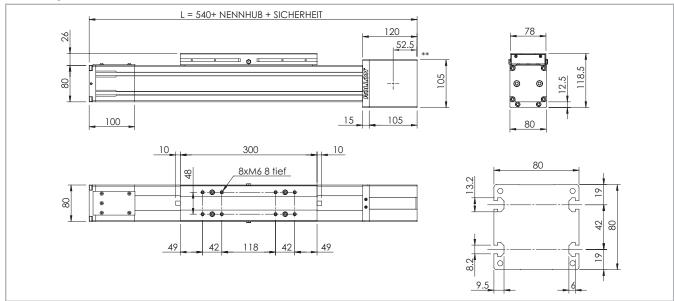

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ELM 65	32 AT 5	32	0,105

Tab. 10

Riemenlänge (mm) = 2 x L - 180 (SP Modell) 2 x L - 145 (Cl Modell)


ELM 65 - Tragzahlen

Тур	F [t	x Nj	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 65 SP	1344	883	48400	22541	48400	320	1376	1376
ELM 65 CI	1344	1075	4229	8731	2849	69,5	80,1	117

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ELM 80 SP - ELM 80 CI

Abmessungen ELM 80 SP - ELM 80 CI

Technische Daten

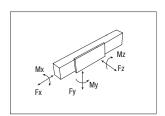
	Тур			
	ELM 80 SP	ELM 80 CI		
Maximale Hublänge [mm]*1	6000	6000		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	5,0	1,5		
Maximale Beschleunigung [m/s²]	50	1,5		
Zahnriemen-Typ	32 AT 10	32 AT 10		
Typ Zahnriemenscheibe	Z 19	Z 19		
Riemenscheibendurchmesser [mm]	60,48	60,48		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190	190		
Gewicht des Laufwagens [kg]	2,7	2,5		
Gewicht Hub Null [kg]	10,5	9,5		
Gewicht je 100 mm Hub [kg]	1,0	0,8		
Losbrechmoment [Nm]	2,2	2,2		
Riemenscheiben-Trägheitsmoment [g mm²]	388075	388075		
Schienengröße [mm]	20	Ø10		
*1) Hublängen bis 11000 mm als Stoßversion möglich		Tab. 12		

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile

Тур	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
ELM 80	0,136	0,195	0,331
			Tab. 13

Antriebsriemen


Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ELM 80	32 AT 10	32	0,185

Tab. 14

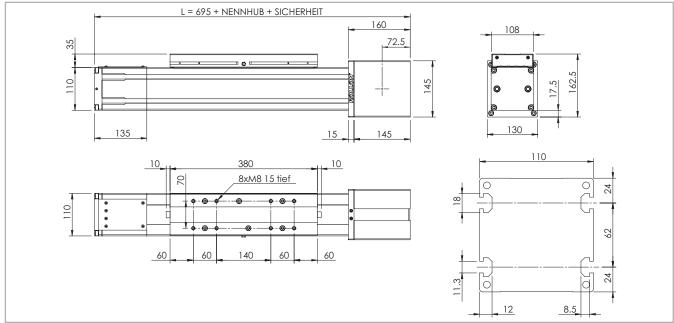
Abb. 6

Riemenlänge (mm) = 2 x L - 230 (SP und Cl Modelle)

ELM 80 - Tragzahlen

Тур	F [1	: X N]	F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 80 SP	2258	1306	76800	35399	76800	722	5606	5606
ELM 80 CI	2258	1795	9154	20079	6167	177	352	454

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

** Für ELM80 mit AC19 siehe PLS-11 für die Länge des Kopfes. Konstante zur Berechnung der Gesamtlänge 554 mm.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

ELM 110 SP - ELM 110 CI

Abmessungen ELM 110 SP - ELM 110 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 7

Technische Daten

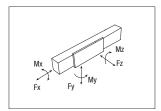
	Тур		
	ELM 110 SP	ELM 110 CI	
Maximale Hublänge [mm]*1	6000	6000	
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05	
Maximale Geschwindigkeit [m/s]	5,0	1,5	
Maximale Beschleunigung [m/s²]	50	1,5	
Zahnriemen-Typ	50 AT 10	50 AT 10	
Typ Zahnriemenscheibe	Z 27	Z 27	
Riemenscheibendurchmesser [mm]	85,94	85,94	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	270	270	
Gewicht des Laufwagens [kg]	5,6	5,1	
Gewicht Hub Null [kg]	22,5	21,6	
Gewicht je 100 mm Hub [kg]	1,4	1,1	
Losbrechmoment [Nm]	3,5	3,5	
Riemenscheiben-Trägheitsmoment [g mm²]	2.193·10 ⁶	2.193·10 ⁶	
Schienengröße [mm]	25	Ø10	
*1) Hublängen bis 11000 mm als Stoßversion möglich		Tab. 16	

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ELM 110	0,446	0,609	1,054

Tab. 17


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ELM 110	50 AT 10	50	0,290

Tab. 18

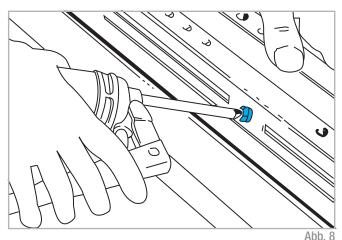
Riemenlänge (mm) = 2 x L - 290 (SP und Cl Modelle)

ELM 110 -Tragzahlen

Тур	F [t	: X V]	F [N	Ĭ]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 110 SP	4980	3300	129400	58416	129400	1392	11646	11646
ELM 110 CI	4980	4140	9154	20079	6167	254	308	427

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart


Schmierung

Lineareinheiten Typ SP mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung SP werden wartungsarme Kugelumlauf-Linearführungen eingesetzt.

In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht.

Um das System wartungsarm auszuführen, sind an den Stirnseiten der Linearführungswagen Schmiervorsätze angebracht, die eine bestimmte Menge an Schmierstoff gespeichert haben und diesen kontinuierlich an die Kugelumläufe abgeben. Dieses System garantiert lange Wartungs-

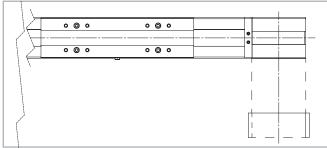
- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.

intervalle: SP-Version: alle 5000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Im Fall von hohen Belastungen und hoher Dynamik wenden Sie sich bitte an unsere Anwendungstechnik.

Lineareinheiten Typ CI mit Laufrollenführungen

Lineareinheiten mit Laufrollenführungen werden durch zwei mit Fett getränkten Filzabstreifern geschmiert. Je nach Anwendungsfall reicht die enthaltene Schmierstoffmenge für Laufleistungen bis ca. 6.000 km. Für eine eventuelle Nachfüllung der Reservoire zur Erzielung größerer Laufleistungen wenden Sie sich bitte an unsere Anwendungstechnik.

Nachschmiermenge (je Schmieranschluß):


Тур	Menge [cm³]
ELM 50 SP	1
ELM 65 SP	1,4
ELM 80 SP	2,8
ELM 110 SP	4,8

Tab. 20

■ Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Weitere ausführliche Informationen über Schmierung entnehmen Sie bitte den technischen Katalogen.

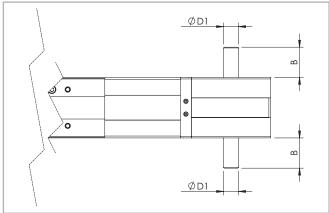
Planetengetriebe

Rechts- oder linksseitige Montage in bezug auf den Antriebskopf

Ahh. 9

Die Lineareinheiten der Serie ELM können mit verschiedenen Versionen von Antrieben ausgestattet werden. Bei allen Versionen wird das Antriebsmoment auf die Zahnriemenscheibe mittels Schrumpfscheibe übertragen. Dieses System garantiert einen spielfreien Antrieb während des gesamten Betriebes.

Versionen mit Planetengetriebe


Planetengetriebe werden vor allem in den Bereichen Automation, Handhabung, und Robotik eingesetzt, wenn hohe Anforderungenan Dynamik und Präzision

gestellt werden. Planetengetriebe sind standardmäßig mit Winkelspiel < 3 arcmin bis < 15 arcmin und Übersetzungen von i = 3 bis i = 1000 erhältlich. Für die Montage von nicht standardmäßigen Planetengetrieben wenden Sie sich bitte an unsere Anwendungstechnik.

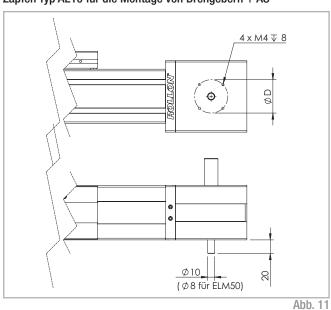
Тур	Links	Rechts	Art des Getriebes
ELM 50	4E	4C	MP 060
ELM 65	4E	4C	MP 060
ELM 65	6E	6C	MP 080
ELM 80	4E	4C	MP 080
ELM 80	6E	6C	MP 105
ELM 110	4E	4C	MP 105
ELM 110	6E	6C	MP 130

Zapfen

Zapfen Typ AS

Тур	Zapfentyp	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7

Tab. 22

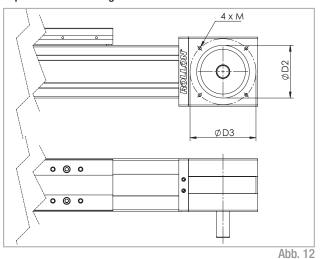

Abb. 10

Der Zapfen kann auf beiden Seiten des Antriebkopfes vorgesehen werden.

Тур	Zapfentyp	Antriebskopf AS links	Antriebskopf AS rechts	Antriebskopf AS beidseitig
ELM 50	AS 12	1E	1C	1A
ELM 65	AS 15	1E	1C	1A
ELM 80	AS 20	1E	1C	1A
ELM 110	AS 25	1E	1C	1A

Tab. 23

Zapfen Typ AE10 für die Montage von Drehgebern + AS

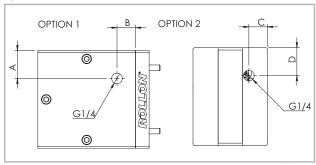


Тур	Antriebskopf AS rechts + AE	Antriebskopf AS links + AE	ØD
ELM 50	VF	VG	49
ELM 65	1G	11	49
ELM 80	1G	11	49
ELM 110	1G	11	76

Tab. 24

Der Zapfen kann auf beiden Seiten des Antriebkopfes vorgesehen werden

Zapfen mit Zentrierung

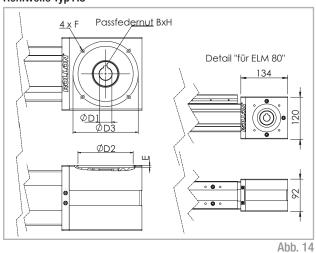


Тур	Zapfen- typ	D2	D3	M	Antriebskopf AS links	Antriebskopf AS rechts
ELM 50	AS 12	55	70	M5	VQ	VP
ELM 65	AS 15	60	85	M6	UQ	UP
ELM 80	AS 20	80	100	M8	UN	UM
ELM 80	AS 20	80	100	M6	TD	UD
ELM 110	AS 25	110	130	M8	UL	UI

Tab. 25

Rollon bietet Antriebsköpfe mit Antriebswelle, Zentrierdurchmesser und Gewinde an.

Sperrluftanschluss


п	1.	1.		-4	4
μ	۱n	n	L	-1	į
	110	-	•		•

Тур	Opti	on 1	Option 2		
	Α	В	С	D	
ELM 50	20	10	14	20	
ELM 65	20	11	14	20	
ELM 80	30	20	20	30	
ELM 110	45	20,5	33	30	

Tab. 26

Hohlwellen

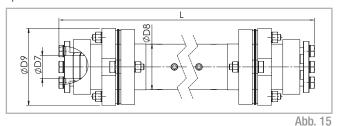
Hohlwelle Typ AC

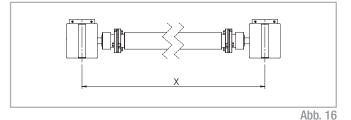
Тур	Zapfentyp	Antriebskopf
ELM 50	AC 12	2A
ELM 80	AC 19	2A
ELM 110	AC 25	2A
ELM 110	AC 32	2C

Tab. 27

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Einheit mm


Тур	Zapfentyp	D1	D2	D3	E	F	Passfeder B x H	
ELM 50	AC 12	12H7	60	75	3,5	M5	4 x 4	
ELM 80*	AC 19	19H7	80	100	3,5	M6	6 x 6	
ELM 110	AC 25	25H7	110	130	4,5	M8	8 x 7	
ELM 110	AC 32	32H7	130	165	4,5	M10	10 x 8	


*Hinweis: Die Abmessungen des Kopfes ändern sich (siehe Detail "A" Abb. 14)

Lineareinheiten im Paralleleinsatz

Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Lineareinheiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.

Einheit mm

Тур	Zapfentyp	D7	D8	D9	Bestellcode	L
ELM 50	AP 12	12	25	45	GK12P1A	L= X-68 [mm]
ELM 65	AP 15	15	40	69,5	GK15P1A	L= X-74 [mm]
ELM 80	AP 20	20	40	69,5	GK20P1A	L= X-97 [mm]
ELM 110	AP 25	25	70	99	GK25P1A	L= X-165 [mm]

Tab. 29

Zubehör

Befestigung mit Spannpratzen

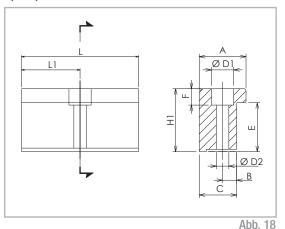
Aufgrund der verwendeten Führungssysteme, die Belastungen aus allen Richtungen erlauben, können Lineareinheiten der Serie ELM in jeglicher Position montiert werden.

Bitte benutzen Sie die folgenden Befestigungsmethoden.

Trägheitsmoment [g mm 2] C1 + C2 \cdot (X-Y)

	C1	C2	Y	Gewicht [Kg] C1+C2 · (X-Y)	
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]
GK12P	61.456	69	166	0,308	0,00056
GK15P	906.928	464	210	2,28	0,00148
GK20P	1.014.968	464	250	2,48	0,00148
GK25P	5.525.250	4.708	356	6,24	0,0051

Tab. 30

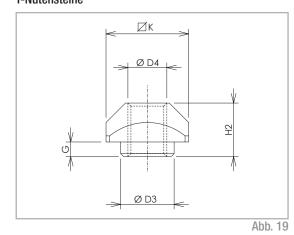

A	
	Abb. 17

Тур	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130

Tab. 31

Die Lineareinheit nicht an den Endköpfen am Ende des Aluminiumprofils befestigen

Spannpratze


Abmessungen (mm)

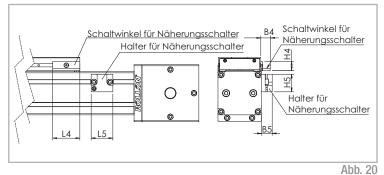
Тур	А	H1	В	С	E	F	D1	D2	L	Lt	Bestell- code
ELM 50	20	14	6	16	10	6	10	5,5	35	17,5	1000958
ELM 65	20	17,5	6	16	11,5	6	9,4	5,3	50	25	1001490
ELM 80	20	20,7	7	16	14,7	7	11	6,4	50	25	1001491
ELM 110	36,5	28,5	10	31	18,5	11,5	16,5	10,5	100	50	1001233
	Tab. 32										

Spannpratze

Ein Block aus eloxiertem Aluminium zur Befestigung von Lineareinheiten über die seitlichen Nuten am Profil.

T-Nutensteine

Abmessungen (mm)


Unit	D3	D4	G	H2	К	Code
ELM 50	-	M4	-	3,4	8	1001046
ELM 65	6,7	M5	2,3	6,5	10	1000627
ELM 80	8	M6	3,3	8,3	13	1000043
ELM 110	11	M8	2,8	10,8	17	1000932

Tab. 33

T-Nutensteine

T-Nutensteine aus Stahl zur Verwendung in den Nuten am Profil

Näherungsschalter Serie ELM...SP - ELM...CI

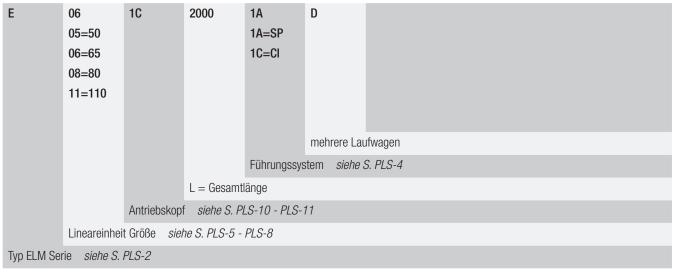
Schaltwinkel für Näherungsschalter

Ein Block aus rot-eloxiertem Aluminium, komplett mit Nuten-

steinen, dient zur Montage von induktiven Näherungsschaltern.

Halter für Näherungsschalter

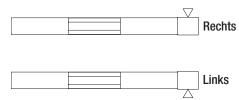
Ein verzinkter Schaltwinkel, der am Laufwagen befestigt wird, dient zum Aktivieren des Näherungsschalters.


Abmessungen (mm)

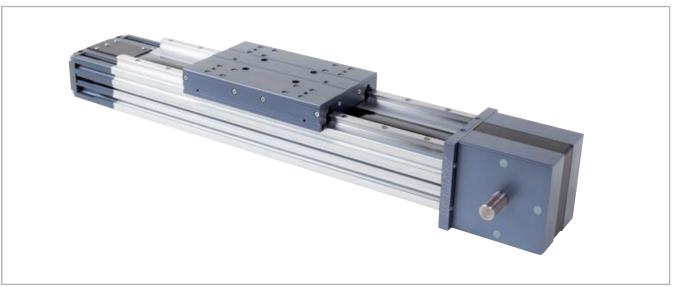
Тур	B4	B5	L4	L5	H4	Н5	Für Näherungs- schalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
ELM 50	9,5	14	25	29	11,9	22,5	08	G000268	G000211
ELM 65	17,2	20	50	40	17	32	Ø 12	G000267	G000212
ELM 80	17,2	20	50	40	17	32	Ø 12	G000267	G000209
ELM 110	17,2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 34

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten ELM Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com



Ausrichtung Links/Rechts

ROBOT Serie / v

Beschreibung ROBOT Serie

ROBOT

Die Linearachsen der Baureihe ROBOT sind besonders für Anwendungen mit hohen Tragzahlen geeignet, bei denen der Laufwagen starken Kräften unterworfen ist, oder für Linearbewegungen bei SCARA-Robotern, die in Produktionslinien eingesetzt werden. Die Baureihe ROBOT eignet sich durch ihren robusten Aufbau und ihre hohen Tragzahlen für alle anspruchsvollen Anwendungsbereiche.

Die Lineareinheiten der Baureihe ROBOT sind in vier Baugrößen von 100 mm bis 220 mm lieferbar. Sie verfügen über eine robuste Struktur aus einem stranggepressten, eloxierten Aluminiumprofil mit rechteckigem Querschnitt. Die Antriebskraft wird durch einen stahlverstärkten Zahnriemen aus Polyurethan übertragen. Der Laufwagen fährt auf zwei parallelen Linearführungen mit vier selbstschmierenden, wartungsarmen Kugelumlaufführungen, die den Laufwagen und alle auftretenden Lasten und Momente stützen. Daneben sind auch mehrere eigenständige oder leerlaufende Laufwagen erhältlich, um die Tragfähigkeit weiter zu steigern.

Ein Abdeckriemen aus Polyurethan schützt den Riemenantrieb vor Staub, Schmutz, Fremdkörpern, Flüssigkeiten und anderen Verunreinigungen.

Die Baureihe ROBOT ist die erste Wahl bei schweren Anwendungen mit hohen Verfahrgeschwindigkeiten und wechselnder Last in aggressiven Betriebsumgebungen, bei denen eine wartungsarme industrielle Automatisierungslösung mit hoher Wiederholgenauigkeit verlangt wird.

Für jede Größe der Baureihe ROBOT ist auch die Version 2C mit 2 unabhängigen Laufwagen verfügbar. Jeder Laufwagen wird durch einen separaten Zahnriemen angetrieben. Am Antriebskopf sitzt dafür auf jeder Seite ein Getriebe. Diese Lösung ist hervorragend geeignet für "Pick and Place" Systeme oder Be- und Entlademaschinen.

Korrosionsgeschützte Version

Abb. 21

Für Anwendungen in rauen Umgebungen bzw. bei häufigem Wasserkontakt sind alle Linearachsen des Plus Systems mit Edelstahlelementen erhältlich.

Die Lineareinheiten des Plus Systems werden aus stranggepresstem, eloxiertem und korrosionsbeständigem Aluminium der Legierungen 6060 und 6082 gefertigt und umschließen Lager, Linearführungen, Muttern und Schrauben aus kohlenstoffarmem Stahl SS AISI 303 und 404C. Dadurch wird Korrosion aufgrund von Feuchtigkeit in den jeweiligen Betriebsumgebungen verhindert bzw. verzögert.

Durch spezielle, ablagerungsfreie Oberflächenbehandlungen, kombiniert mit einem Schmiersystem, das FDA zugelassene Schmiermittel verwendet, können die Linearachsen in hochempfindlichen und kritischen Anwendungen eingesetzt werden. Dazu gehört die Lebensmittel- und Pharmaindustrie, wo eine Produktkontamination ausgeschlossen werden muss.

- Innere Bauteile aus Edelstahl
- Stranggepresstes, eloxiertes Aluminium 6060 und 6082, korrosionsgeschützt
- Linearführungen, Muttern, Schrauben und Komponenten aus kohlenstoffarmem Stahl SS AlSI 303 und 404C
- FDA zugelassene Schmiermittel

Aufbau des Systems

Aluminiumprofil

Die selbsttragenden Profile, die in der Lineareinheit der ROBOT Serie eingesetzt werden, wurden in Zusammenarbeit mit einem führenden Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Die Abmessungen sind entsprechend EN 755-9 toleriert. Das verwendete Material ist eloxiertes Aluminium der Legierung 6060. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und/oder zur Befestigung von Zubehörelementen.

Antriebsriemen

In den Lineareinheiten der ROBOT Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriemen-Typ hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Um vorzeitigen Verschleiß durch Durchhängen des Antriebsriemens bei großen Hublängen und bei seitlich gekippter Montage zu verhindern, sind in den Endköpfen der Lineareinheiten zusätzliche Kugellager angebracht, die den Riemen im Bereich der Umlenkung exakt und reibungsarm auf der Zahnriemenscheibe führen.

Laufwagen

Der Laufwagen der Lineareinheiten der ROBOT Serie besteht aus eloxiertem Aluminium Die Abmessungen variieren entsprechend der verschiedenen Typen. Der Laufwagen besteht aus zwei Einzelteilen, um das Durchlaufen des Schutzriemens zu ermöglichen. Die Gewinde der Befestigungsbohrungen sind mit Stahleinsätzen versehen. In den Front- und Seitenteilen des Laufwagens sind Bürstendichtungen eingesetzt, die zusätzlichen Schutz gegen das Eindringen von Schmutz bieten.

Abdeckriemen

Die Lineareinheiten der ROBOT Serie sind mit einem Polyurethan-Riemen ausgestattet, der alle im Profilinnern liegenden mechanischen Teile vor Verschmutzungen von Außen und somit vor vorzeitigem Verschleiß schützt. Der Abdeckriemen, der an den Enden der Lineareinheit befestigt ist, wird durch Kugellager geführt, die sich im Innern des Laufwagens befinden. Das ermöglicht ein Durchlaufen des Abdeckriemens durch den Laufwagen mit geringster Reibung.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Physikalische Eigenschaften

Tab. 35

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Mechanische Eigenschaften

Tab. 36

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

PLS-16 Tab. 37

Führungssysteme

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigungen. Lineareinheiten der ELM Serie werden mit zwei Führungssystemen angeboten:

ROBOT...SP mit Kugelumlauf-Linearführungen

- Zwei Kugelumlauf-Linearführungen mit Tragzahlen für extrem hohe Belastungen werden außen in den dafür vorgesehenen Nuten des Aluminiumprofils befestigt.
- Der Laufwagen der Lineareinheit wird auf vier vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad, können zusätzliche Abstreifer montiert werden.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- An den Stirnseiten der Linearführungswagen sind Schmierstoffreservoirs angebracht. Diese geben kontinuierlich Schmierstoff an die Kugelreihen ab und ermöglichen so eine Langzeitschmierung.

Mit dem oben beschriebenen Fuhrungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Hohe zulässige Momentbelastungen
- Niedrige Verschiebewiderstände durch geringe Reibung
- Hohe Lebensdauer
- Wartungsarm (abhängig vom Anwendungsfall, siehe S. PLS-32 "Schmierung")
- Reduzierte Laufgeräusche

ROBOT...CE mit Laufrollenführung

- Zwei Rundstangen aus gehärtetem und geschliffenem Stahl (58/60HRC - h6) werden in die dafür vorgesehen Nuten außen am Aluminiumprofil eingestemmt.
- Im Laufwagen sind sechs doppelreihig kugelgelagerte Laufrollen mit gotischem Laufbahnprofil montiert. Dadurch wird je Laufrolle ein Zweipunkt-Kontakt mit den Rundstangen hergestellt, der eine Kraftaufnahme aus allen Richtungen ermöglicht (außer für Roboter 160).
- Die sechs Laufrollen sind auf Stahlbolzen im Laufwagen gelagert, zwei davon exzentrisch, um das System spielfrei bzw. mit Vorspannung einstellen zu können (außer für Roboter 160).
- Um die Laufbahnen sauber und geschmiert zu halten, sind an den Laufwagenenden fließfettgetränkte Filzstücke eingesetzt.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Gute Positioniergenauigkeit
- Hohe Laufruhe
- Wartungsarm (abhängig vom Anwendungsfall)

ROBOT SP Querschnitt

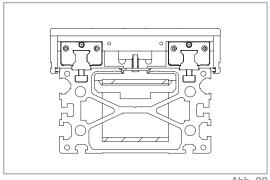
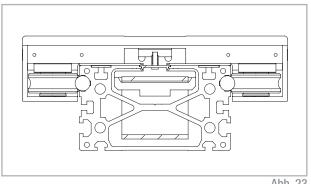
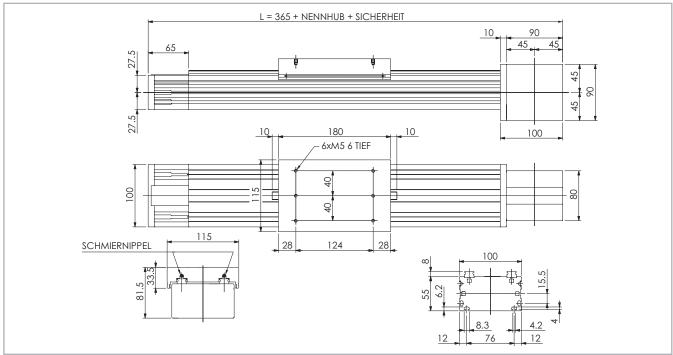


Abb. 22

ROBOT CE Querschnitt




Abb. 23

ROBOT 2C

Für SP und CE Linearführungssysteme ist die 2C-Version mit 2 unabhängigen Laufwagen auf einer Achse erhältlich.

▶ ROBOT 100 SP

Abmessungen ROBOT 100 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

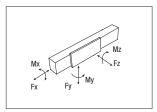
Abb. 24

Technische Daten

	Тур
	R0B0T 100 SP
Maximale Hublänge [mm]	5800
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	2,4
Gewicht Hub Null [kg]	4,5
Gewicht je 100 mm Hub [kg]	0,8
Losbrechmoment [Nm]	1,3
Riemenscheiben-Trägheitsmoment [g mm²]	87200
Schienengröße [mm]	15 mini
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 38

1) Die Wiederholgenauigkeitist abhangig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 39

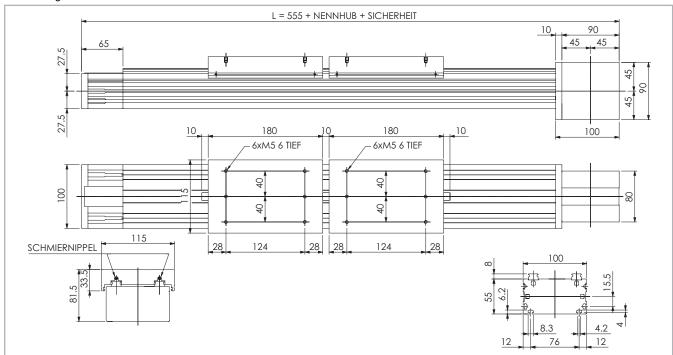
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ROBOT 100 SP	32 AT 5	32	0,105
			Tab. 40

Riemenlänge (mm) = $2 \times L - 115$

ROBOT 100 SP -Tragzahlen


Тур	F _x [N]		F [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SP	1176	739	22800	21144	22800	775	1322	1322

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 41

ROBOT 100 SP-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 100 SP-2C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

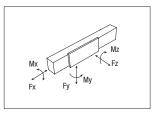
Abb. 25

Technische Daten

	Тур
	R0B0T 100 SP-2C
Maximale Hublänge [mm]	5600
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	16 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	2,4
Gewicht Hub Null [kg]	8,0
Gewicht je 100 mm Hub [kg]	0,8
Losbrechmoment [Nm]	1,3
Riemenscheiben-Trägheitsmoment [g mm²]	16220
Schienengröße [mm]	15 mini
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 42

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 43


Antriebsriemen

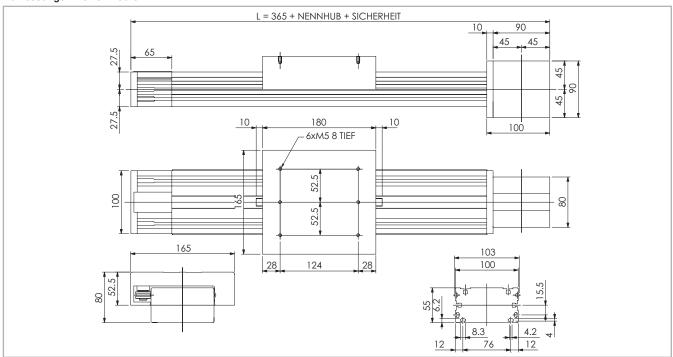
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 100 SP-2C	16 AT 5	16	0,05
			Tab. 44

Riemenlänge (mm) = $2 \times L - 115$

Zwei Riemen pro Achse

ROBOT 100 SP-2C - Tragzahlen


Тур		F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
		Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 SF	P-2C	588	370	22800	21144	22800	775	1322	1322

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 42

ROBOT 100 CE

Abmessungen ROBOT 100 CE

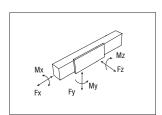
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 26

Technische Daten

	Тур
	R0B0T 100 CE
Maximale Hublänge [mm]	6000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	1,5
Maximale Beschleunigung [m/s²]	1,5
Zahnriemen-Typ	32 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	3,4
Gewicht Hub Null [kg]	5,5
Gewicht je 100 mm Hub [kg]	0,8
Losbrechmoment [Nm]	1,3
Riemenscheiben-Trägheitsmoment [g mm²]	87200
Schienengröße [mm]	Ø6
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 46

Flächenträgheitsmomente der Aluminiumprofile

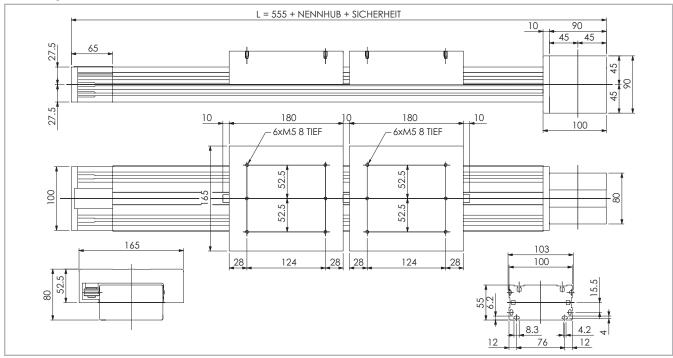

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 47

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m	
ROBOT 100-CE	32 AT 5	32	0,105	
			Tab. 48	

Riemenlänge (mm) = 2 x L - 115


ROBOT 100 CE - Tragzahlen

Тур	F [N	: X V]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 CE	1176	907	4229	8731	2849	174	101	233

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

№ ROBOT 100 CE-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 100 CE-2C

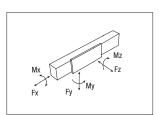
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 27

Technische Daten

	Тур
	R0B0T 100 CE-2C
Maximale Hublänge [mm]	5800
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	1,5
Maximale Beschleunigung [m/s²]	1,5
Zahnriemen-Typ	16 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	3,4
Gewicht Hub Null [kg]	10,5
Gewicht je 100 mm Hub [kg]	0,8
Losbrechmoment [Nm]	1,3
Riemenscheiben-Trägheitsmoment [g mm²]	16220
Schienengröße [mm]	Ø6
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 50

Flächenträgheitsmomente der Aluminiumprofile

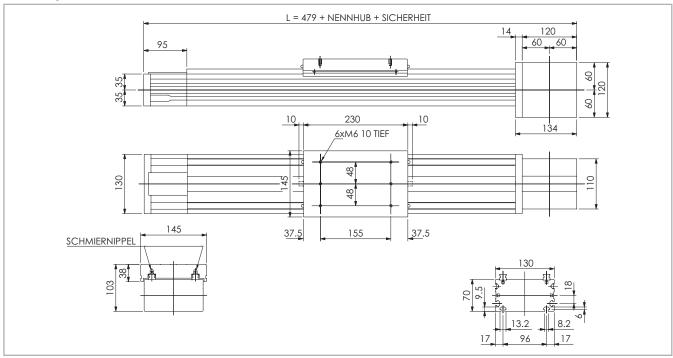

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]	
R0B0T 100	0,05	0,23	0,28	
			Tab. 51	

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 100 CE-2C	16 AT 5	16	0,05
			Tab. 52

Riemenlänge (mm) = 2 x L - 115 Zwei Riemen pro Achse


ROBOT 100 CE-2C -Tragzahlen

Тур	F _x [N]		F _. [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 CE-2C	588	454	4229	8731	2849	174	101	233

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ROBOT 130 SP

Abmessungen ROBOT 130 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

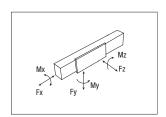
Abb. 28

Technische Daten

	Тур
	R0B0T 130 SP
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	50 AT 10
Typ Zahnriemenscheibe	Z 17
Riemenscheibendurchmesser [mm]	54,11
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	170
Gewicht des Laufwagens [kg]	2,8
Gewicht Hub Null [kg]	9,1
Gewicht je 100 mm Hub [kg]	1,2
Losbrechmoment [Nm]	2,7
Riemenscheiben-Trägheitsmoment [g mm²]	493200
Schienengröße [mm]	15
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 54

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 55

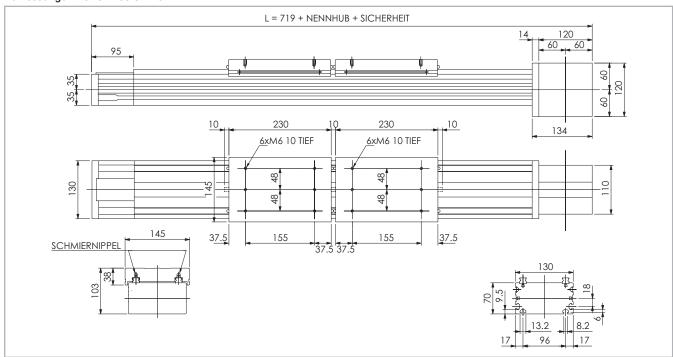
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m	
R0B0T 130 SP	50 AT 10	50	0,29	
			Tab. 56	

Riemenlänge (mm) = 2 x L - 103

ROBOT 130 SP - Tragzahlen


Тур	F _x [N]		F [i	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP	3112	1725	96800	45082	96800	4646	6340	6340

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 57

▶ ROBOT 130 SP-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 130 SP-2C

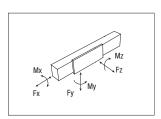
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 29

Technische Daten

	Тур
	R0B0T 130 SP-2C
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	25 AT 10
Typ Zahnriemenscheibe	Z 17
Riemenscheibendurchmesser [mm]	54,11
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	170
Gewicht des Laufwagens [kg]	2,8
Gewicht Hub Null [kg]	14,9
Gewicht je 100 mm Hub [kg]	1,2
Losbrechmoment [Nm]	2,7
Riemenscheiben-Trägheitsmoment [g mm²]	196200
Schienengröße [mm]	15
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 58

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 59

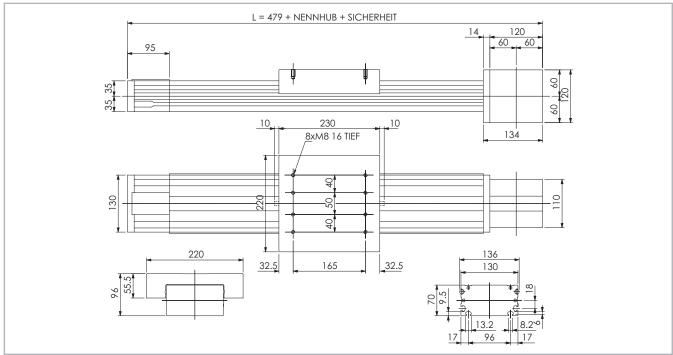
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 130 SP-2C	25 AT 10	25	0,16
			Tab. 60

Riemenlänge (mm) = $2 \times L - 103$ Zwei Riemen pro Achse

ROBOT 130 SP-2C - Tragzahlen


Тур	F _x [N]		F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP-2C	1556	862	96800	45082	96800	4646	6340	6340

Tab. 61

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

ROBOT 130 CE

Abmessungen ROBOT 130 CE

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

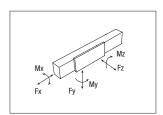
Abb. 30

Technische Daten

	Тур
	R0B0T 130 CE
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	1,5
Maximale Beschleunigung [m/s²]	1,5
Zahnriemen-Typ	50 AT 10
Typ Zahnriemenscheibe	Z 17
Riemenscheibendurchmesser [mm]	54,11
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	170
Gewicht des Laufwagens [kg]	4,3
Gewicht Hub Null [kg]	10,3
Gewicht je 100 mm Hub [kg]	1,1
Losbrechmoment [Nm]	2,7
Riemenscheiben-Trägheitsmoment [g mm²]	493200
Schienengröße [mm]	Ø10
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 62

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

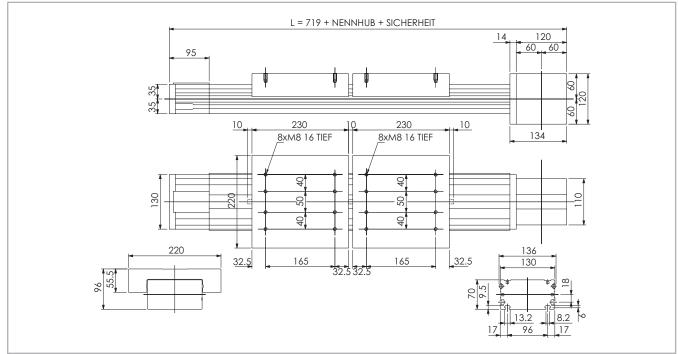

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 63

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ROBOT 130 CE	50 AT 10	50	0,29
			Tab. 64

Riemenlänge (mm) = 2 x L - 103



ROBOT 130 CE - Tragzahlen

Тур	F _x [N]		F [!	V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE	3112	2437	9154	20079	6167	498	275	635

■ ROBOT 130 CE-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 130 CE-2C

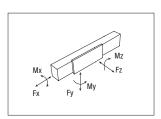
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 31

Technische Daten

	Тур		
	R0B0T 130 CE-2C		
Maximale Hublänge [mm]*1	6000		
Max. Wiederholgenauigkeit [mm]*2	± 0,05		
Maximale Geschwindigkeit [m/s]	1,5		
Maximale Beschleunigung [m/s²]	1,5		
Zahnriemen-Typ	25 AT 10		
Typ Zahnriemenscheibe	Z 17		
Riemenscheibendurchmesser [mm]	54,11		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	170		
Gewicht des Laufwagens [kg]	4,3		
Gewicht Hub Null [kg]	17,4		
Gewicht je 100 mm Hub [kg]	1,1		
Losbrechmoment [Nm]	2,7		
Riemenscheiben-Trägheitsmoment [g mm²]	196200		
Schienengröße [mm]	Ø10		
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 66		

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 67

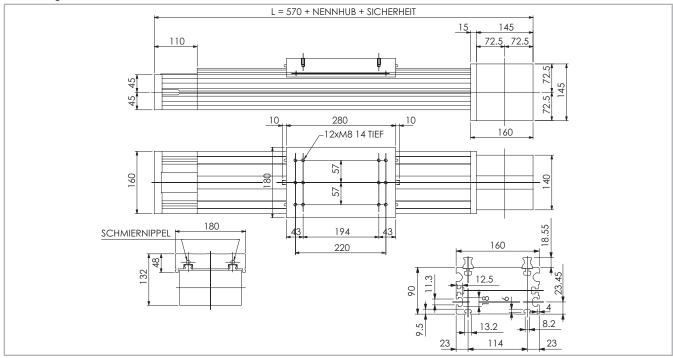
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ROBOT 130 CE-2C	25 AT 10	25	0,16
			Tab. 68

Riemenlänge (mm) = $2 \times L - 103$ Zwei Riemen pro Achse

ROBOT 130 CE-2C - Tragzahlen


Тур	F _x [N]		F [I	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 CE-2C	1556	1219	9154	20079	6167	498	275	635

Tab. 69

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

ROBOT 160 SP

Abmessungen ROBOT 160 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

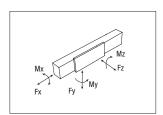
Abb. 32

Technische Daten

	Тур
	ROBOT 160 SP
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	70 AT 10
Typ Zahnriemenscheibe	Z 20
Riemenscheibendurchmesser [mm]	63,66
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	200
Gewicht des Laufwagens [kg]	5,3
Gewicht Hub Null [kg]	21
Gewicht je 100 mm Hub [kg]	1,9
Losbrechmoment [Nm]	4,5
Riemenscheiben-Trägheitsmoment [g mm²]	1.202 · 10 ⁶
Schienengröße [mm]	20
1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 7

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich
*2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

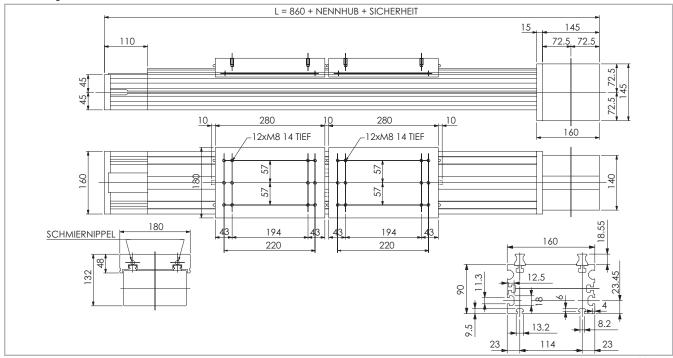

Тур	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 71

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 160 SP	70 AT 10	70	0,41
			Tab. 72

Riemenlänge (mm) = 2 x L - 130



ROBOT 160 SP - Tragzahlen

Тур	F _x [N]		F [N	, Ž	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 SP	5229	3024	153600	70798	153600	8755	12211	12211

▶ ROBOT 160 SP-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 160 SP-2C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

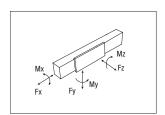
Abb. 33

Technische Daten

	Тур	
	R0B0T 160 SP-2C	
Maximale Hublänge [mm]*1	6000	
Max. Wiederholgenauigkeit [mm]*2	± 0,05	
Maximale Geschwindigkeit [m/s]	5,0	
Maximale Beschleunigung [m/s²]	50	
Zahnriemen-Typ	32 AT 10	
Typ Zahnriemenscheibe	Z 19	
Riemenscheibendurchmesser [mm]	60,48	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190	
Gewicht des Laufwagens [kg]	5,3	
Gewicht Hub Null [kg]	30	
Gewicht je 100 mm Hub [kg]	1,9	
Losbrechmoment [Nm]	4,5	
Riemenscheiben-Trägheitsmoment [g mm²]	210300	
Schienengröße [mm]	20	
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 74	

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

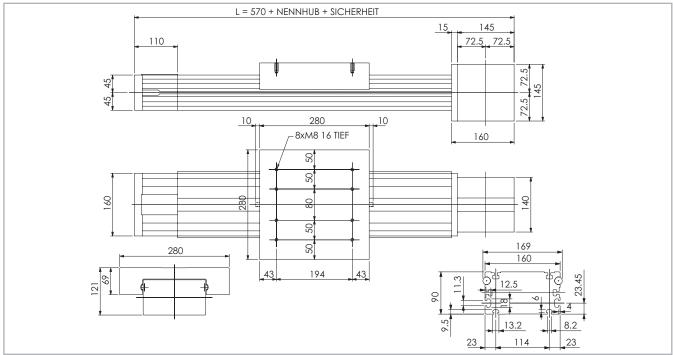

Тур	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 75

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 160 SP-2C	32 AT 10	32	0,185
			Tab. 76

Riemenlänge (mm) = $2 \times L - 130$ Zwei Riemen pro Achse



ROBOT 160 SP - Tragzahlen

Тур	F [1	: X N]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 SP-2C	2258	1306	153600	70798	153600	8755	12211	12211

ROBOT 160 CE

Abmessungen ROBOT 160 CE

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

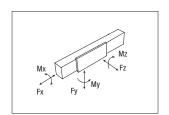
Abb. 34

Technische Daten

	Тур
	R0B0T 160 CE
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	1,5
Maximale Beschleunigung [m/s²]	1,5
Zahnriemen-Typ	70 AT 10
Typ Zahnriemenscheibe	Z 20
Riemenscheibendurchmesser [mm]	63,66
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	200
Gewicht des Laufwagens [kg]	8,6
Gewicht Hub Null [kg]	23
Gewicht je 100 mm Hub [kg]	2,2
Losbrechmoment [Nm]	4,5
Riemenscheiben-Trägheitsmoment [g mm²]	1,202 · 10 ⁶
Schienengröße [mm]	Ø16
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 78

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 79

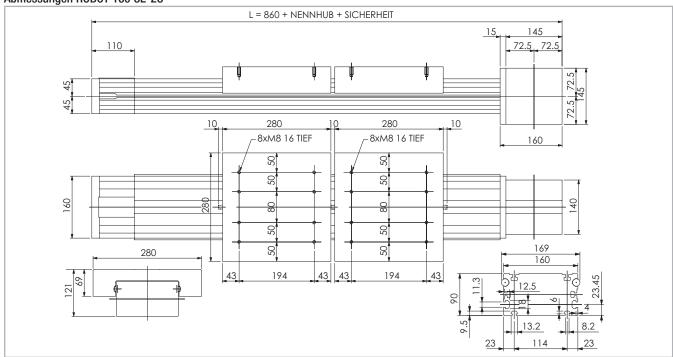

Flächenträgheitsmomente der Aluminiumprofile

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 160 CE	70 AT 10	70	0,41
			Tab. 80

Riemenlänge (mm) = 2 x L - 130



ROBOT 160 CE - Tragzahlen

Тур	F [1	: × V]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE	5229	4158	15538	35366	8585	1053	653	1507

■ ROBOT 160 CE-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 160 CE-2C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

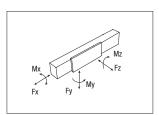
Abb. 35

Technische Daten

	Тур
	R0B0T 160 CE-2C
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	1,5
Maximale Beschleunigung [m/s²]	1,5
Zahnriemen-Typ	32 AT 10
Typ Zahnriemenscheibe	Z 19
Riemenscheibendurchmesser [mm]	60,48
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190
Gewicht des Laufwagens [kg]	8,6
Gewicht Hub Null [kg]	32
Gewicht je 100 mm Hub [kg]	2,2
Losbrechmoment [Nm]	4,5
Riemenscheiben-Trägheitsmoment [g mm²]	210300
Schienengröße [mm]	Ø16
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 82

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente	e der A	Aluminiumprofile
-------------------------	---------	------------------

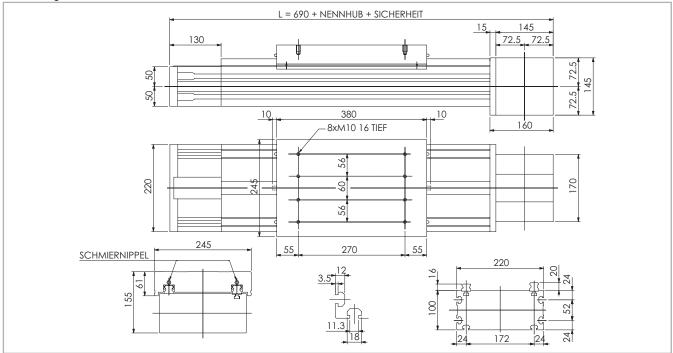

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 83

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 160 CE-2C	32 AT 10	32	0,185
			Tab. 84

Riemenlänge (mm) = $2 \times L - 130$ Zwei Riemen pro Achse


Тур	F [1	: X Nj	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 CE-2C	2258	1795	15538	35366	8585	1053	653	1507

Tab. 85

ROBOT 160 CE-2C - Tragzahlen

ROBOT 220 SP

Abmessungen ROBOT 220 SP

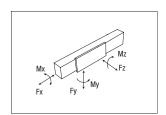
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 36

Technische Daten

	Тур
	ROBOT 220 SP
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	100 AT 10
Typ Zahnriemenscheibe	Z 25
Riemenscheibendurchmesser [mm]	79,58
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	250
Gewicht des Laufwagens [kg]	14,4
Gewicht Hub Null [kg]	41
Gewicht je 100 mm Hub [kg]	2,5
Losbrechmoment [Nm]	6,4
Riemenscheiben-Trägheitsmoment [g mm²]	4.114 · 10 ⁶
Schienengröße [mm]	25
1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 8

Flächenträgheitsmomente der Aluminiumprofile

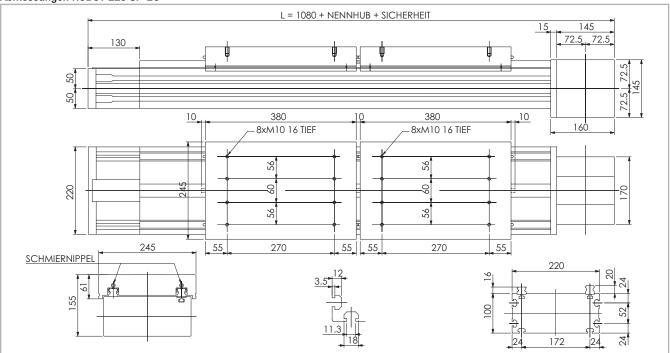

Тур	[10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 220	0,65	3,26	3,92
			Tab. 87

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 220 SP	100 AT 10	100	0,58
			Tab. 88

Riemenlänge (mm) = 2 x L - 120


ROBOT 220 SP - Tragzahlen

Тур	F [1	: N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP	9545	6325	258800	116833	258800	22257	28986	28986

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

■ ROBOT 220 SP-2C DOPPELTE UNABHÄNGIGE WAGEN

Abmessungen ROBOT 220 SP-2C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

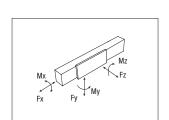
Abb. 37

Technische Daten

	Тур
	R0B0T 220 SP-2C
Maximale Hublänge [mm]*1	6000
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	40 AT 10
Typ Zahnriemenscheibe	Z 25
Riemenscheibendurchmesser [mm]	79,58
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	250
Gewicht des Laufwagens [kg]	13,3
Gewicht Hub Null [kg]	46
Gewicht je 100 mm Hub [kg]	2,5
Losbrechmoment [Nm]	6,4
Riemenscheiben-Trägheitsmoment [g mm²]	2.026 · 10 ⁶
Schienengröße [mm]	25
*1) Hublängen bis 11000 mm als Stoßversion möglich	Tab. 90

^{*1)} Hublängen bis 11000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 220	0,65	3,26	3,92
			Tab. 91

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R0B0T 220 SP-2C	40 AT 10	40	0,23
			Tab. 92

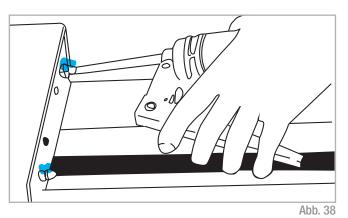
Riemenlänge (mm) = $2 \times L - 120$ Zwei Riemen pro Achse

ROBOT 220 SP-2C - Tragzahlen

Тур	F [1	: Ň]	F [1	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP-2C	3818	2530	258800	116833	258800	22257	28986	28986

Tab. 93

^{*2)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart


Schmierung

Lineareinheiten Typ SP mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung ROBOT werden wartungsarme Kugelumlauf-Linearführungen eingesetzt.

In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht.

Um das System wartungsarm auszuführen sind an den Stirnseiten der Linearführungswagen Schmiervorsätze angebracht, die eine bestimmte Menge an Schmierstoff gespeichert haben und diesen kontinuierlich an die Kugelumläufe abgeben. Dieses System garantiert lange Wartungs-

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsist enzklasse NLGI 2.

intervalle: SP-Version: alle 5000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Im Fall von hohen Belastungen und hoher Dynamik wenden Sie sich bitte an unsere Anwendungstechnik zur genauen Prüfung.

Lineareinheiten Typ CE mit Laufrollenführungen

Lineareinheiten mit Laufrollenführungen werden durch zwei mit Fett getränkte Filzabstreifer geschmiert. Je nach Anwendungsfall reicht die enthaltene Schmierstoffmenge für Laufleistungen bis ca. 6.000 km. Für eine eventuelle Nachfüllung der Reservoire zur Erzielung größerer Laufleistungen wenden Sie sich bitte an unsere Anwendungstechnik.

Nachschmiermenge (je Schmieranschluß):

Тур	Menge: [cm³]
ROBOT 100 SP	0,7
ROBOT 130 SP	0,7
ROBOT 160 SP	1,4
R0B0T 220 SP	2,4

Tab. 94

■ Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für ausführliche Informationen über Schmierung wenden Sie sich bitte an unsere Anwendungstechnik.

Planetengetriebe

Rechts- oder linksseitige Montage in Bezug auf den Antriebskop

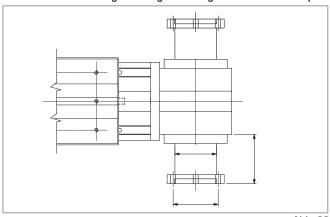
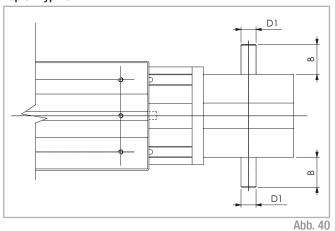


Abb. 39

Die Lineareinheiten der ROBOT Serie können mit verschiedenen Versionen von Antrieben ausgestattet werden. Bei allen Versionen wird das Antriebsmoment auf die Zahnriemenscheibe mittels Schrumpfscheibe übertragen. Dieses System garantiert einen spielfreien Antrieb während des gesamten Betriebes.


Versionen mit Planetengetriebe

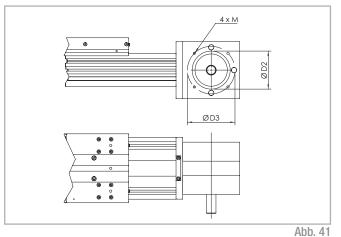
Planetengetriebe werden vor allem in den Bereichen Automation, Handhabung, und Robotik eingesetzt, wenn hohe Anforderungen an Dynamik und Präzision gestellt werden. Planetengetriebe sind standardmäßig mit Winkelspiel < 3 arcmin bis < 15 arcmin und Übersetzungen von i = 3 bis i = 1000 erhältlich. Für die Montage von nicht standardmäßigen Planetengetrieben setzen Sie sich bitte mit Rollon in Verbindung.15' and with a reduction ratio from 1:3 to 1:1000. For assembly of non-standard planetary gear, contact our offices.

Тур	Links	Rechts	Art des Getriebes
Robot 100	4E	4C	MP 060
Robot 130	4E	4C	MP 080
Robot 130	6E	6C	MP 105
Robot 160	4E	4C	MP 105
Robot 220	4E	4C	MP 105
Robot 220	6E	6C	MP 130

Zapfen

Zapfen Typ AS

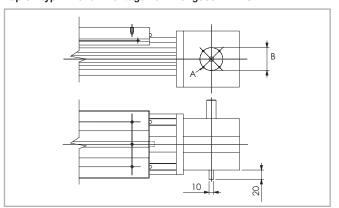
Тур	Zapfentyp	В	D1
R0B0T 100	AS 15	35	15h7
R0B0T 130	AS 20	40	20h7
R0B0T 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7


Tab. 96

Der Zapfen kann auf beiden Seiten der Lineareinheit vorgesehen werden

Passend für Typ	Zapfentyp	Antriebskopf AS links	Antriebskopf AS rechts	Antriebskopf beidseitig AS
R0B0T 100	AS 15	1E	1C	1A
ROBOT 130	AS 20	1E	1C	1A
ROBOT 160	AS 25	1E	1C	1A
R0B0T 220	AS 25	1E	1C	1A

Tab. 97


AS mit Zentrierringen

Тур	Zapfen- typ	D2	D3	M	Antrieb- skopf AS rechts	Antrieb- skopf AS links
R0B0T 100	AS 15	80	100	M6	VL	VM
R0B0T 130	AS 20	80	100	M6	TC	TD
R0B0T 160	AS 25	110	130	M8	UB	UC
R0B0T 220	AS 25	110	130	M8	VP	VQ

Tab. 98

Zapfen Typ AE10 für Montage von Drehgebern + AS

Тур	А	В	Antriebskopf AS rechts + AE	Antriebskopf AS links + AE
R0B0T 100	4xM4	Ø49	1G	11
ROBOT 130	4xM4	Ø79	1G	11
ROBOT 160	4xM4	Ø76	1G	11
R0B0T 220	4xM4	Ø76	1G	11

Tab. 99

Der Zapfen kann auf beiden Seiten der Lineareinheit vorgesehen werden

Hohlwellen

Hohlwelle Typ AC

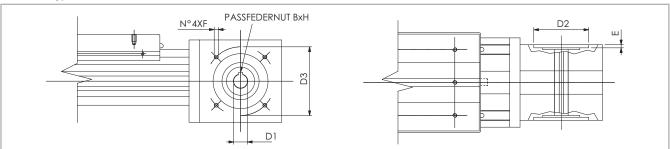
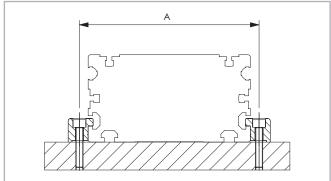


Abb. 43

Einheit (mm)

Passend für Typ	Zapfentyp	D1	D2	D3	Е	F	Passfeder B x H	Antriebs- kopf
R0B0T 100	AC19	19H7	80	100	3	M6	6 x 6	2A
R0B0T 130	AC19	19H7	80	100	4,5	M6	6 x 6	2A
R0B0T 130	AC20	20H7	80	100	4,5	M6	6 x 6	20
R0B0T 130	AC25	25H7	110	130	4,5	M8	8 x 7	2E
R0B0T 160	AC25	25H7	110	130	4,5	M8	8 x 7	2A
R0B0T 160	AC32	32H7	130	165	4,5	M10	10 x 8	2C
R0B0T 220	AC25	25H7	110	130	4,5	M8	8 x 7	2A
R0B0T 220	AC32	32H7	130	165	4,5	M10	10 x 8	2C

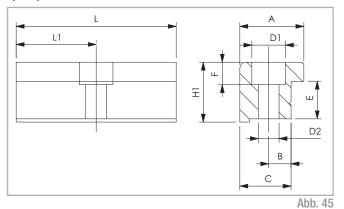
Tab. 100


Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Zubehör

Befestigung mit Spannpratzen

Aufgrund der verwendeten Führungssysteme, die Belastungen aus allen Richtungen erlauben, können Lineareinheiten der ROBOT Serie in jeglicher Position befestigt werden.


Bitte benutzen Sie dabei die folgenden Befestigungsmethoden.

Тур	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 101

Abb. 44

Spannpratzen

 $\label{thm:continuous} \mbox{Ein Block aus eloxiertem Aluminium zur Befestigung von Lineareinheiten \"{u}ber die seitlichen Nuten am Profil.}$

Befestigung mit Nutensteinen

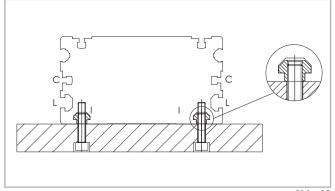
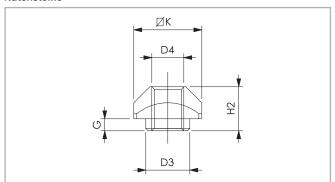


Abb. 46

Achtung:


Die Lineareinheit nicht an den Endköpfen am Ende des Aluminiumprofils befestigen.

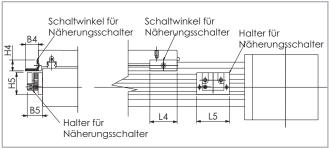
Abmessungen (mm)

Тур	А	В	С	E	F	D1	D2	H1	L	L1	Bestellcode
ROBOT 100	20	6	16	10	5,5	9,5	5,3	14	35	17,5	1000958
ROBOT 130	20	7	16	12,7	7	10,5	6,5	18,7	50	25	1001061
ROBOT 160	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	50	1001233
R0B0T 220	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	50	1001233

Tab. 102

Nutensteine

L=Seitlich / C=Zentral / I=Unten - Siehe hierzu Abb. 45


Abb. 47

T-Nutensteine aus Stahl zur Verwendung in den Nuten am Profil

Abmessungen (mm)

Тур		D3	D4	G	H2	К	Bestellcode					
ROBOT 100	L-I	-	M4	-	3,4	8	1001046					
R0B0T 130	С	-	M3	-	4	6	1001097					
R0B0T 130	L-I	8	M6	3,3	8,3	13	1000043					
R0B0T 160	С	-	M6	-	5,8	13	1000910					
R0B0T 160	1	8	M6	3,3	8,3	13	1000043					
R0B0T 160	L	11	M8	2,8	10,8	17	1000932					
R0B0T 220	L-I	11	M8	2,8	10,8	17	1000932					

Befestigungsmaterial für Näherungsschalter ROBOT...SP

Abb. 48

Halter für Näherungsschalter

Ein Block aus rot-eloxiertem Aluminium, komplett mit Nutensteinen ausgerüstet, dient zur Montage von induktiven Näherungsschaltern.

Schaltwinkel für Näherungsschalter

Ein verzinkter Schaltwinkel, der am Laufwagen befestigt wird, dient zum Aktivieren des Näherungsschalters..

Abmessungen (mm)

Тур	В4	B5	L4	L5	H4	Н5	Für Näherungss- chalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
ROBOT 100 SP	9,5	20	25	45	12	25	Ø 8	G000268	G000092
ROBOT 130 SP	21	28	50	60	20	40	Ø 12	G000269	G000126
ROBOT 160 SP	21	28	50	64	20	40	Ø 12	G000269	G000123
ROBOT 220 SP	21	28	50	70	20	40	Ø 12	G000269	G000207

Tab. 104

Achtung:

Bei Verwendung von Faltenbälgen können die oben aufgeführten Zubehörteile für Näherungsschalter nicht verwendet werden.

Näherungsschalter ROBOT...CE

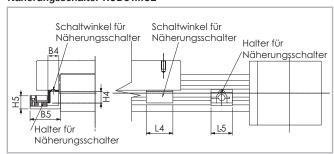


Abb. 49

Halter für Näherungsschalter

Ein Block aus rot-eloxiertem Aluminium, komplett mit Nutensteinen ausgerüstet, dient zur Montage von induktiven Näherungsschaltern.

Schaltwinkel für Näherungsschalter

Ein verzinkter Schaltwinkel, der am Laufwagen befestigt wird, dient zum Aktivieren des Näherungsschalters.

Abmessungen (mm)

Тур	В4	B5	L4	L5	H4	Н5	Für Näherungss- chalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
ROBOT 100 CE	9,5	47	25	29	12	20	Ø 8	G000268	G000756
ROBOT 130 CE	21	57	50	40	20	25	Ø 12	G000269	G000125
ROBOT 160 CE	21	57	50	40	20	28,5	Ø 12	G000269	G000124

Tab. 105

Achtung:

Bei Verwendung von Faltenbälgen können die oben aufgeführten Zubehörteile für Näherungsschalter nicht verwendet werden.

Abdeckungen

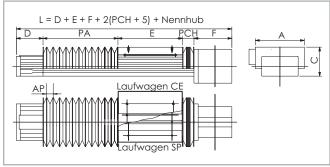


Abb. 50

Abdeckriemen

Alle Lineareinheiten der ROBOT Serie sind standardmäßig mit Abdeckriemen aus Polyurethan ausgerüstet, der alle im Profilinnern liegenden mechanischen Bauteile vor Verschmutzungen von Außen und somit vorzeitigem Verschleiß schützt. Der Abdeckriemen, der an den Enden der Lineareinheit befestigt ist, wird durch Kugellager geführt, die sich im Innern des Laufwagens befinden. Das ermöglicht ein Durchlaufen des Abdeckriemens durch den Laufwagen mit geringster Reibung.

Dichtungen der Kugel-Linearführungen

Die Lineareinheiten, die mit Kugel-Linearführungen ausgerüstet sind, haben standardmäßig End- und Seitendichtungen aus NBR (Kautschuk), die die Wagen der Linearführung vor Verschmutzung und vorzeitigem Verschleiß schützen.

Zusätzliche Schutzabdeckungen

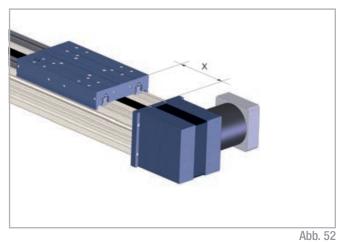
Für den Einsatz in Umgebungen mit stärksten Verschmutzungen oder bei anderen kritischen Einflüssen, können Lineareinheiten der ROBOT Seriezusätzlich mit Faltenbälgen aus verschiedensten Materialien ausgerüstet werden. Die Faltenbälge werden an den Enden der Lineareinheit und an den Kopfseiten des Laufwagens mittels Klettband befestigt. Das vereinfacht Montage und Austausch.

Die Gesamtlänge der Lineareinheit (Maß L) muß bei Verwendung von Faltenbälgen um die Länge der geschlossenen Faltenpakete (2xPCH) verlängert werden.

s. Abb. 50.

Abmessungen (mm)

Тур	А	С	D	E	F
ROBOT 130	174	103	95	230	135
ROBOT 160	204	131,5	110	280	160
ROBOT 220	275	149,5	130	380	160

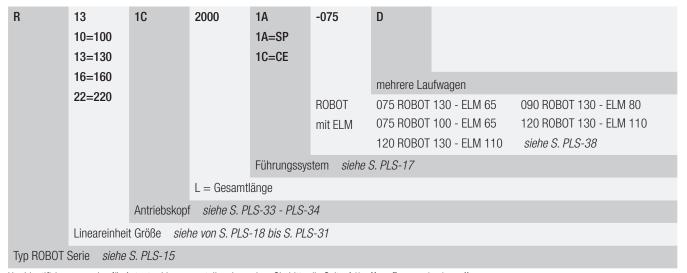

Tab. 106

Standard-Material: Nylon, polyurethan beschichtet

Materialien auf Anfrage: Nylon, PVC beschichtet; Glasfaser; Edelstahl **Achtung:** Bei Verwendung von Faltenbälgen können die Zubehörteile für Näherungsschalter nicht verwendet werden.

Montagekits

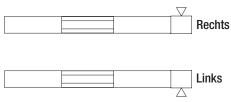
Mobroshopustom zu kombinioren, histot DOLLON entenreshande Defectigungskite en Zu


Um eine Achse der ROBOT Serie mit anderen Achsen zu einem Mehrachssystem zu kombinieren, bietet ROLLON entsprechende Befestigungskits an. Zur Montage des Befestigungsmaterials wird an beiden Enden der Achse eine definierte Länge ohne Führungsschiene benötigt. Die verfügbaren Kombinationen und Längen sind in der folgenden Tabelle ersichtlich.

Bei	spiel Achsenkombination	Bestellcode Montage Kit	X Länge Profil ohne Führungsschiene (mm)
1-	ROBOT 100 - ELM 65	G000205	75
	ROBOT 100 - ROBOT 130	G000201*	155
Am	ROBOT 100 - ECO 80	G000203	90
In	R0B0T 100 - E-SMART 50	G000642	60
1-	ROBOT 130 - ELM 65	G000196	75
1-	ROBOT 130 - ELM 80	G000195	90
	ROBOT 130 - ROBOT 130	G000197*	155
	ROBOT 130 - ROBOT 160	G000197*	190
1-	ROBOT 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
-	ROBOT 160 - ROBOT 220	G000202*	255
1-	ROBOT 220 - ELM 110	G000199	120

 $^{^{\}star}$ Auf der ROBOT-Laufwagenplatte sind zusätzliche Befestigungsbohrungen notwendig.

Bestellschlüssel / ~


Bestellnummer f ür Lineareinheiten ROBOT Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

SC Serie / ~

Beschreibung SC Serie

Abb. 52

SC

Die Linearachsen der Baureihe SC wurden speziell für den Einsatz als Vertikalachsen bei der Gantry-Bauweise konzipiert, bzw. für Anwendungen, bei denen sich das Aluminiumprofil bewegt, während der Laufwagen fest steht.

Die Linearachsen der Baureihe SC sind in drei Baugrößen mit 65 mm, 130 mm und 160 mm erhältlich. Sie bestehen aus einem selbsttragenden Profil aus stranggepresstem, eloxiertem Aluminium.

Das vertikale SC-System zeichnet sich durch eine hohe Stabilität aus, die durch die Verwendung von zwei parallelen Linearführungen, vier wartungsarmen Linearführungswagen mit Kugelkäfigen und einem sehr breiten Antriebsriemen erreicht wird.

Die Baureihe SC wurde für hohe Tragzahlen und schnelle Arbeitszyklen entworfen. Ihre spezielle Konzeption ermöglicht es, sie mit den kompatiblen Linearachsen der Baureihe ROBOT zu kombinieren, ohne dass Adapterplatten notwendig sind.

Korrosionsgeschützte Version

Für Anwendungen in rauen Umgebungen bzw. bei häufigem Wasserkontakt sind alle Linearachsen des Plus Systems mit Edelstahlelementen erhältlich.

Die Lineareinheiten des Plus Systems werden aus stranggepresstem, eloxiertem und korrosionsbeständigem Aluminium der Legierungen 6060 und 6082 gefertigt und umschließen Lager, Linearführungen, Muttern und Schrauben aus kohlenstoffarmem Stahl SS AISI 303 und 404C. Dadurch wird Korrosion aufgrund von Feuchtigkeit in den jeweiligen Betriebsumgebungen verhindert bzw. verzögert.

Durch spezielle, ablagerungsfreie Oberflächenbehandlungen, kombiniert mit einem Schmiersystem, das FDA zugelassene Schmiermittel verwendet, können die Linearachsen in hochempfindlichen und kritischen Anwendungen eingesetzt werden. Dazu gehört die Lebensmittel- und Pharmaindustrie, wo eine Produktkontamination ausgeschlossen werden muss.

- Innere Bauteile aus Edelstahl
- Stranggepresstes, eloxiertes Aluminium 6060 und 6082, korrosionsgeschützt
- Linearführungen, Muttern, Schrauben und Komponenten aus kohlenstoffarmem Stahl SS AISI 303 und 404C
- Schmierung mit FDA zugelassenen Schmiermitteln

Aufbau des Systems

Strangpressprofile

Die selbstragenden Profile, die in den Lineareinheiten der SC Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060.Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine schnelle Montage der Anschlusskonstruktion oder von Zubehörteilen. Im Profilinnern befinden sich Hohlkammern, die für die Durchführung von Stromkabeln, Pneumatikschläuchen etc. verwendet werden können.

Antriebsriemen

In den Lineareinheiten der SC Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch

Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Laufwagen

Im Innern des Laufwagens befinden sich die Antriebszahnriemenscheibe und zwei Umlenkrollen, die das Abwälzen der Antriebszahnriemenscheibe auf dem ruhenden Zahnriemen ermöglichen. Die Einzelteile des Laufwagens bestehen aus eloxiertem Aluminium. Die Abmessungen variieren entsprechend der verschiedenen Ausführungen. Eine Seite des Laufwagens ist als Montageplatte mit Durchgangsbohrungen ausgeführt, die für die direkte Montage mit den jeweiligen Laufwagen der Lineareinheiten der Serie SC vorgesehen ist. In den Seiten- und Frontteilen des Laufwagens sind Bürstendichtungen eingesetzt, die das Eindringen von Schmutz erschweren.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 108

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 109

Mechanische Eigenschaften

<u> </u>			
Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

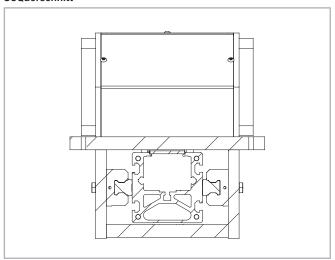
Führungssystem

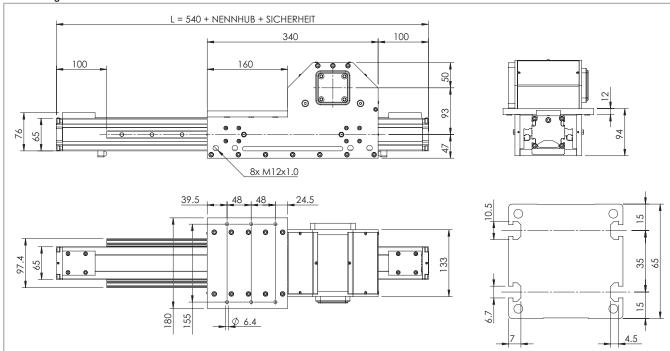
Das eingesetzte Führungssystem ist maßgebend für die max. Tragzahlen, Verfahrgeschwindigkeiten und Beschleunigung. In den Lineareinheiten der SC Serie werden ausschließlich Kugel-Linearführungen eingesetzt:

SC...SP mit Kugelumlauf-Linearführungen

- Zwei Kugelumlauf-Linearführungen mit Tragzahlen für extrem hohe Belastungen werden in den dafür vorgesehenen Nuten an den Außenseiten des Aluminiumprofils befestigt.
- Der Laufwagen der Lineareinheit wird auf vier vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.
- Die Linearführungswagen der Serie SP sind zusätzlich mit einer Kugelkette ausgerüstet. Diese sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- An den Stirnseiten der Linearführungswagen sind Schmierstoffreservoirs angebracht. Diese geben kontinuierlich Schmierstoff an die Kugelreihen ab und ermöglichen so eine Langzeitschmierung.

SCQuerschnitt




Abb. 53

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Hohe zulässige Momentbelastungen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Geräuscharm
- Wartungsarm (abhängig vom Anwendungsfall)

SC 65 SP

Abmessungen SC 65 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 54

Technische Daten

	Тур
	SC 65 SP
Maximale Hublänge [mm]	1500
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 5
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	7,8
Gewicht Hub Null [kg]	11,6
Gewicht je 100 mm Hub [kg]	0,7
Losbrechmoment [Nm]	1,3
Schienengröße [mm]	15

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
SC 65	0,06	0,09	0,15
			Tab. 112

Antriebsriemen

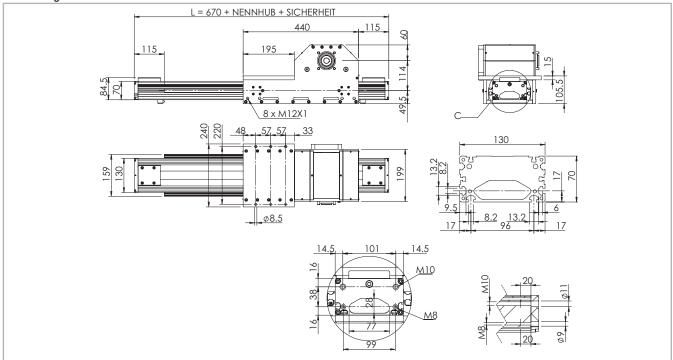
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SC 65	32 AT 5	32	0,105

Riemenlänge (mm) = L + 85

SC 65 SP - Tragzahlen

Тур	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 65 SP	1344	883	96800	45082	96800	3775	11616	11616


Tab. 111

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 114

SC 130 SP

Abmessungen SC 130 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

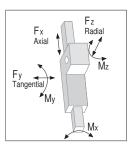
Abb. 55

Technische Daten

	Тур
	SC 130 SP
Maximale Hublänge [mm]	2000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	50 AT 10
Typ Zahnriemenscheibe	Z 20
Riemenscheibendurchmesser [mm]	63,66
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	200
Gewicht des Laufwagens [kg]	13,5
Gewicht Hub Null [kg]	23
Gewicht je 100 mm Hub [kg]	1,4
Losbrechmoment [Nm]	3
Schienengröße [mm]	15
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 115

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

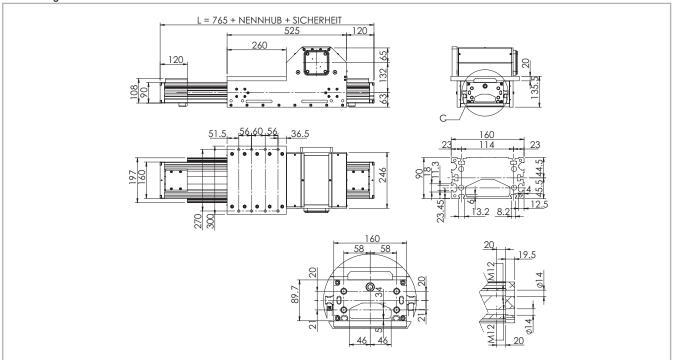

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SC 130	0,15	0,65	0,79
			Tab. 116

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SC 130	50 AT 10	50	0,209
			Tab. 117

Riemenlänge(mm) = L + 101


SC 130 SP - Tragzahlen

Тур	F _x [N]		F _y [N]		F ₂ [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 130 SP	3735	2160	96800	45082	96800	6921	16311	16311

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

SC 160 SP

Abmessungen SC 160 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

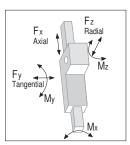
Abb. 56

Technische Daten

	Тур
	SC 160 SP
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	70 AT 10
Typ Zahnriemenscheibe	Z 25
Riemenscheibendurchmesser [mm]	79,58
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	250
Gewicht des Laufwagens [kg]	32
Gewicht Hub Null [kg]	48
Gewicht je 100 mm Hub [kg]	1,9
Losbrechmoment [Nm]	6,1
Schienengröße [mm]	20

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	[10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SC 160	0,37	1,50	1,88
			Tab. 120

Antriebsriemen

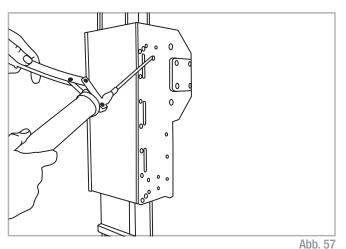
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SC 160	70 AT 10	70	0,407
			Tab. 121

Riemenlänge(mm) = L + 121

SC 160 SP - Tragzahlen

Тур	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
SC 160 SP	6682	4428	153600	70798	153600	13555	31104	31104


Tab. 119

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Schmierung

SP-Lineareinheiten mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung SP werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht. Um das System wartungsarm auszuführen sind an den Stirnseiten der Linearführungswagen Schmiervorsätze angebracht, die

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.

eine bestimmte Menge an Schmierstoff gespeichert haben und diesen kontinuierlich an die Kugelläufe abgeben. Daneben sorgen diese Schmierstoffreservoirs für eine erhebliche Reduzierung der Schmierfrequenz beim Modul. Dieses System garantiert lange Wartungsintervalle: SP-Version: alle 5000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit einer längeren Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

Nachschmiermenge (je Schmieranschluß):

Тур	Menge [cm³]
SC 65	0,7
SC 130	0,7
SC 160	1,4

Tab. 123

■ Bei besonderen Bedingungen (hohe Belastungen, großeVerschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Planetengetriebe

Montage rechtsseitig oder linksseitig in Bezug auf die Bewegungsachse

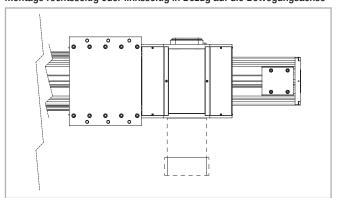
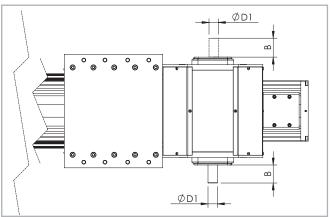


Abb. 58

Die SC Lineareinheit kann Serienmäßig mit verschiedenen Arten zur Übertragung der Bewegung verbunden werden.

- Planetengetriebe
- Schneckengetriebe
- Version mit einfachen Wellen
- Versions mit Hohlwelle

Versionen mit Planetengetriebe


Planetengetriebe werden vor allem in den Bereichen Automation, Handhabung, und Robotik eingesetzt, wenn hohe Anforderungen an Dynamik und Präzision gestellt werden. Planetengetriebe sind standardmäßig mit Winkelspiel < 3 arcmin bis < 15 arcmin und Übersetzungen von i = 3 bis i = 1000 erhältlich. Für die Montage von nicht standardmäßigen Planetengetrieben setzen Sie sich bitte mit Rollon in Verbindung.

Тур	Links	Rechts	Art des Getriebes
SC 65	4EA	4CA	MP 080
SC 130	4EA	4CA	MP 105
SC 160	4EA	4CA	MP 130

Tab. 124

Zapfen

Zapfen Typ AS

Тур	Zapfentyp	В	D1
SC 65	AS 20	40	20h7
SC 130	AS 25	50	25h7
SC 160	AS 25	50	25h7

Tab. 125

Abb. 59

Der Zapfen kann auf beiden Seiten der Lineareinheit vorgesehen werden

Тур	Zapfentyp	Antriebskopf AS links	Antriebskopf AS rechts	Antriebskopf AS beidseitig
SC 65	AS 20	1EA	1CA	1AA
SC 130	AS 25	1EA	1CA	1AA
SC 160	AS 25	1EA	1CA	1AA

Tab. 126

Hohlwelle

Hohlwelle Typ AC

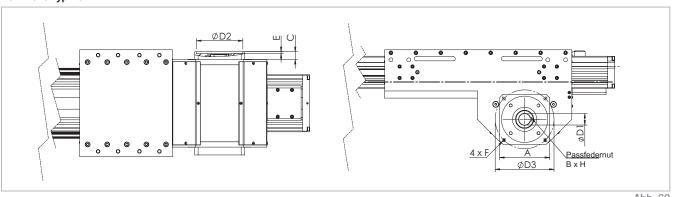


Abb. 60

Einheit (mm)

Passend für Typ	Zapfen Typ	D1	D2	D3	А	С	E	F	Passfeder B x H	Antriebs- kopf
SC 65 SP	AC 19	19H7	80	100	90	13	3	M6	6 x 6	2AA
SC 65 SP	AC 20	20H7	80	100	90	13	3	M6	6 x 6	2BA
SC 130 SP	AC 20	20H7	80	100	115	19	4.5	M6	6 x 6	2AA
SC 130 SP	AC 25	25H7	110	130	115	19	4.5	M8	8 x 7	2BA
SC 160 SP	AC 32	32H7	130	165	140	22	5.5	M10	10 x 8	2AA

Tab. 127

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Zubehör

Befestigung mit Spannpratzen

Aufgrund des verwendeten Führungssystems, das Belastungen aus allen Richtungen erlaubt, können Lineareinheiten der SC Serie in jeglicher Position befestigt werden. Bitte benutzen Sie dabei folgende Befestigungsmethoden:

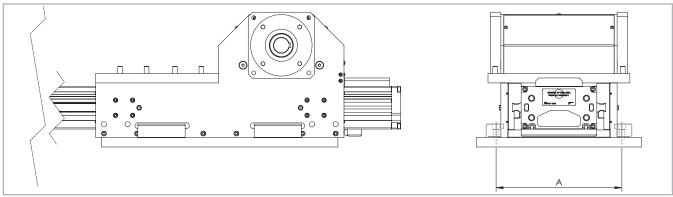
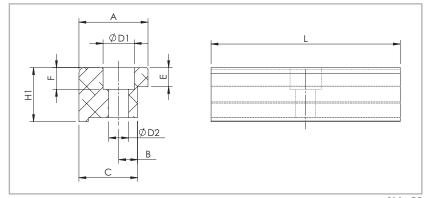



Abb. 61

Spannpratze

Material: Eloxiertes Aluminium

Тур	A (mm)
SC 65 SP	147
SC 130 SP	213
SC 160 SP	266

Tab. 128

Abb. 62

Тур	А	В	С	Е	F	D1	D2	H1	L	Bestellcode
SC 65 SP	20	6	16	10	5,5	9,5	5,3	14	35	1001491
SC 130 SP	20	7	16	12,7	7	10,5	6,5	18,7	50	1001491
SC 160 SP	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	1001233

Tab. 129

Befestigung über Montageplatte

PLS-48

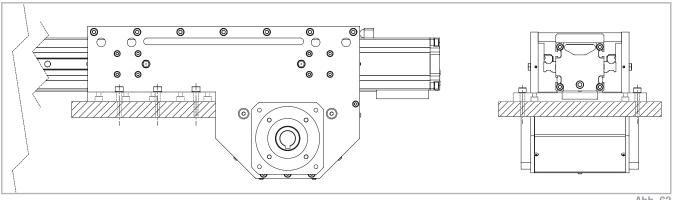
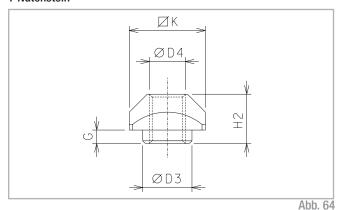



Abb. 63

T-Nutenstein

T-Nutenstein aus Stahl zur Verwendung in den entsprechenden T-Nuten des Profils

Befestigung mit Nutensteinen

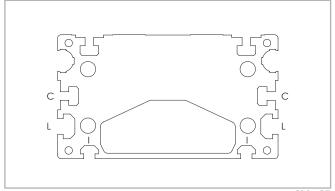


Abb. 65

Achtung:

Die Lineareinheit nicht an den Endköpfen am Ende des Aluminiumprofils befestigen.

Тур	Nutensteinschlitz	D3	D4	G	H2	К	Bestellcode
SC 65	L	6,7	M5	2,3	6,5	10	1000627
SC 130	L-I	8	M6	3,3	8,3	13	1000043
SC 130	С	-	M3	-	4	6	1001097
SC 160	I	8	M6	3,3	8,3	13	1000043
SC 160	L	11	M8	2,8	10,8	17	1000932
SC 160	С	-	M6	-	5,8	13	1000910

L=Seitlich / C=Zentral / I=Untenl

Tab. 130

Näherungsschalter

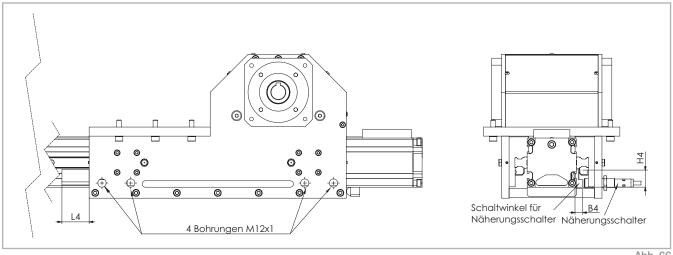


Abb. 66

Montage der Näherungsschalter

In den Seitenplatten des Laufwagens befinden sich vier Gewindebohrungen, die für die Montage der Näherungsschalter vorgesehen wurden. Bei der Montage der Schalter ist darauf zuachten, dass dieser nicht zu tief eingeschraubt wird, da er sonst von dem sich bewegenden Schaltwinkel beschädigt werden könnte.

Schaltwinkel für Näherungsschalter

Ein verzinktes L-Profil, das in einer entsprechenden Nut des Aluminiumprofils mit Nutensteinen befestigt wird, dient zum Aktivieren der Näherungsschalter.

Тур	B4	H4	L4	Schaltwinkel Bestellcode
SC 65	8,5	23	50	G001997
SC 130	8,4	25	50	G001862
SC 160	10	27	50	G000272

Tab. 131

Abdeckungen

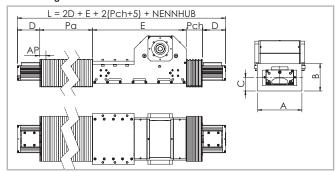


Abb. 67

Abmessungen mm

Тур	А	В	С	D	E
SC 65	135	109	54,5	100	340
SC 130	212	130	64	115	440
SC 160	248	150	73	120	525

Tab. 132

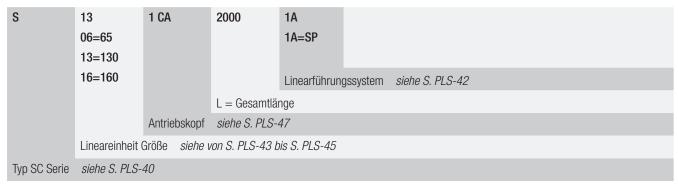
Bürstendichtungen

Der Laufwagen der SC Serie ist allseitig mit Bürstendichtungen versehen, die das Eindringen von Schmutz in das Wageninnere erschweren.

Zusätzliche Schutzabdeckungen

Für den Einsatz in Umgebungen mit stärksten Verschmutzungen oder bei anderen kritischen Einflüssen, können Lineareinheiten der SC Serie zusätzlich mit Faltenbälgen aus verschiedensten Materialien ausgerüstet werden. Die Faltenbälge werden an den Enden der Lineareinheit und an den Kopfseiten des Laufwagens mittels Klettband befestigt. Das vereinfacht Montage und Austausch.

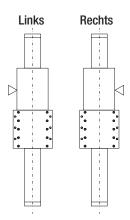
Die Gesamtlänge der Lineareinheit (Maß L) muss bei Verwendung von-Faltenbälgen um die Länge der geschlossenen Faltenpakete verlängert werden


s. Abb. 67.

Standard-Material: Nylon, Polyurethan-beschichtet

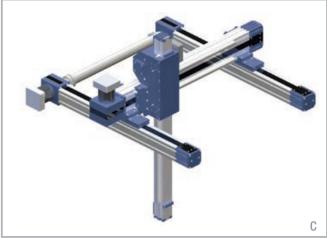
Materialien auf Anfrage: Nylon, PVC beschichtet; Glasfaser; Stahl, rostbeständig

Bestellschlüssel / v


Bestellbezeichnung für Lineareinheiten SC Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts


Mehrachsensysteme

Häufig müssen beim Einsatz von Lineareinheiten in Mehrachsensysteme die für die Kombination notwendigen Verbindungselemente selbst konstruiert und hergestellt werden. Deshalb hat Rollon ein Kombinationssystem zur einfachen und schnellen Zusammensetzung der verschiedenen Lineareinheiten konzipiert, um so die Umsetzung vom Projekt zur fertigen Maschine zu beschleunigen. Rollon bietet dem Kunden eine Auswahl an Montagezubehör wie Adapterplatten, Spannpratzen und Winkel, die zum Teil direkt in die Lineareinheit integriert sind, wodurch auch Montagezeiten auf ein Minimum reduziert werden.

Beispiele für Kombinationsmöglichkeiten:

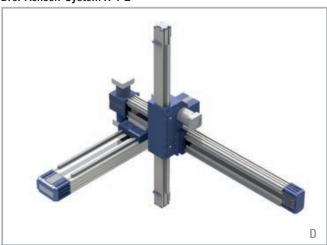
Drei-Achsen-System X-Y-Z

Zwei-Achsen System X-Y



A - Lineareinheiten: - Achse X: 2 ELM 80 SP - Achse Y: 1 ROBOT 160 SP Notwendige Verbindungselemente: 2 Sets Verbindungswinkel für die Montage der Einheit ROBOT 160 SP auf den Laufwagen der Einheiten ELM 80 SP.

C - Lineareinheiten: - Achse X: 2 ELM 65 SP - Achse Y: 1 ROBOT 130 SP - Achse Z: 1 SC 65 SP


Notwendige Verbindungskomponenten: 2 Sets Verbindungswinkel für die Montage der Einheit ROBOT 130 SP auf den Laufwagen der Einheiten ELM 65 SP. Die Einheit SC 65 wird ohne weitere Elemente direkt auf den Laufwagen der Einheit ROBOT 130 SP verschraubt.

Zwei-Achsen System Y-Z

B - Lineareinheiten: - Achse Y: 1 ROBOT 220 SP - Achse Z: 1 SC 160 SP Notwendige Verbindungselemente: Keine. Die Einheit SC 160 wird ohne weitere Elemente direkt auf den Laufwagen der Einheit ROBOT 220 SP verschraubt.

Drei-Achsen-System X-Y-Z

D - Lineareinheiten: - Achse X: 1 ROBOT 220 SP... - Achse Y:1 ROBOT 130 SP....- Achse Z: SC 65.

Notwendige Verbindungselemente: 1 Set Verbindungswinkel für die Montage der Einheit ROBOT 130 SP auf dem Laufwagen der Einheit ROBOT 220 SP. Die Einheit SC 65 SP wird ohne weitere Elemente direkt auf den Laufwagen der Einheit ROBOT 130 SP verschraubt.

ONE Serie /

Beschreibung ONE Serie

Abb. 1

Die One Serie umfasst Linearachsen mit Zahnriemenantrieb, die speziell für die Anwendung in Reinräumen entwickelt wurden.

Die Einheiten werden mit einem vom Fraunhofer-Institut (IPA) in Stuttgart ausgestellten Zertifikat ausgeliefert, das die Übereinstimmung mit der Reinraumklasse ISO 3 (DIN EN ISO 14644-1) bzw. mit der Reinraumklasse nach FED STD 0.01 (FED 209 E) bestätigt.

Das System verhindert, dass Partikel in die Umgebung gelangen können, in der die Lineareinheit installiert ist. Dieses wurde einerseits durch die Installation einer speziellen Dichtung erreicht, mit der die Längsöffnung des Läufers abgeschlossen wird, andererseits durch die Verwendung einer Vakuumpumpe mit 0,8 bar Unterdruck, die mit zwei Vakuumleitungen im Antriebskopf und im Umlenkkopf verbunden ist.

Durch den angelegten Unterdruck an den Endköpfen wird die Partikelemission aus dem Inneren der Lineareinheit gesaugt und zu den Luftfiltern abgeführt. Die Linearachsenkomponenten des Clean Room Systems werden alle aus Edelstahl gefertigt oder werden einer Spezialbehandlung unterzogen, um niedrige Partikelemissionen zu gewährleisten.

Die eingesetzten Schmierstoffe sind speziell für Reinraum- bzw. Vakuumanwendungen geeignet.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe ONE verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

Antriebsriemen

Die ONE Serie ist die erste Lineareinheit, die von einem Zahnriemen angetrieben wird, mit dem die ISO KLASSE 3 erreicht werden kann.

Wir verwenden ausgewählte qualitativ hochwertige Polyurethan-Zahnriemen mit AT-Profil, hergestellt von einem branchenführenden Unternehmen.

Laufwagen

Der Laufwagen der Lineareinheiten der ONE Serie besteht aus eloxiertem Aluminium. Die Abmessungen variieren entsprechend der verschiedenen-Typen. Er besteht aus drei Einzelteilen, um das Durchlaufen des Schutzriemens zu ermöglichen. In den Front- und Seitenteilen des Laufwagens sind Bürstendichtungen eingesetzt, die zusätzlichen Schutz bieten gegen das Eindringen von Schmutz. Die Gewinde der Befestigungsbohrungen sind mit Stahleinsätzen versehen.

Abdeckriemen

Die Lineareinheiten der ONE Serie sind mit einem Polyurethan-Riemen ausgestattet, der alle im Profilinnern liegenden mechanischen Teile vor Staub und Fremdkörpern schützt. Der Abdeckriemen wird durch Kugellager geführt, die sich im inneren des Laufwagens befinden. Das ermöglicht ein Durchlaufen des Abdeckriemens durch den Laufwagen mit geringster Reibung.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J	0 m 10-9	°C
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	
2,7	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Lineareinheiten der ONE Serie

Zertifizierte Reinraumklasse

Die ONE Serie wurde vom IPA FRAUNHOFER Institut in Stuttgart getestet. Dank des Einsatzes einer Vakuumabsaugung und einer speziellen Abdichtung haben wir die folgende Reinraumklasse erreicht (internationales Patent ist anhängig)

Vakuumabsaugung

Bei der ONE Serie sind jeweils auf der Antriebs- und Umlenkseite der Einheit spezielle Anschlüsse installiert, an die die Vakuumabsaugung angeschlossen wird. Die Stärke der Luftabsaugung ist von Fall zu Fall zu definieren; bereits getestet wurde auf der Einheit ONE 80 ein Druck von 0,8 bar bei 1.000 mm bis 4.000 mm Hub. Wir erzielten ISO-Klasse 1 dank der kombinierten Wirkung der Vakuumpumpe und einem speziellen Rollon Abdeckriemen.

Ausgewählte mechanische komponenten

Die ONE Serie besteht aus qualitativ hochwertigen Komponenten. Für Lager, Linearführungen, Wellen, Riemenscheiben und sonstige metallische Komponenten wird nur Edelstahl (AISI 303, AISI 440C) eingesetzt. An den Stellen, an denen kein Edelstahl verwendet werden kann, setzt Rollon spezielle Beschichtungen und Kunststoffe unter Berücksichtigung der Einhaltung der Partikelemission für Reinräume ein.

Schmierung

Die ONE Serie ist mit innovativen Kugelumlaufführungen mit speziellen Kugelketten ausgestattet, die die Kugeln der Laufwagen gegenseitig auf Abstand halten. Dadurch verlängern sich die Wartungsintervalle und die Partikelbildung wird gering gehalten, wenn diese Funktion mit dem Einsatz besonderer Schmiermittel kombiniert wird, die speziell für Reinraumund Vakuumanwendungen entwickelt wurden.

Grössen

Die ONE Serie ist in den drei Baugrößen 50, 80 und 110 für Mehrachsensysteme verfügbar.

- ONE 50
- ONE 80
- ONE 100

Maximaler Hub ist 6.000 mm, mit Ausnahme der ONE 50, bei der der maximale Hub 3.700 mm beträgt

ONE SP section

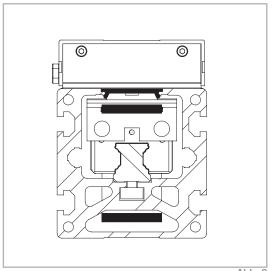



Abb. 2

INTL. PATENT PENDING

Abmessungen ONE 50

Detaillierte Informationen finden Sie in den entsprechenden dxf-Dateien, die Sie auf unserer Homepage www.rollon.com herunterladen können.

Abb. 3

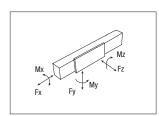
Technische Daten

	Тур
	ONE 50
Maximale Hublänge [mm]	3700
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	22 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	0,4
Gewicht Hub Null [kg]	1,8
Gewicht je 100 mm Hub [kg]	0,4
Losbrechmoment [Nm]	0,4
Riemenscheiben-Trägheitsmoment [g mm²]	19810
Schienengröße [mm]	12 mini
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 4

*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Moments of inertia of the aluminum body

Тур	_x	l	l
	[10 ⁷ mm ⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ONE 50	0,025	0,031	0,056

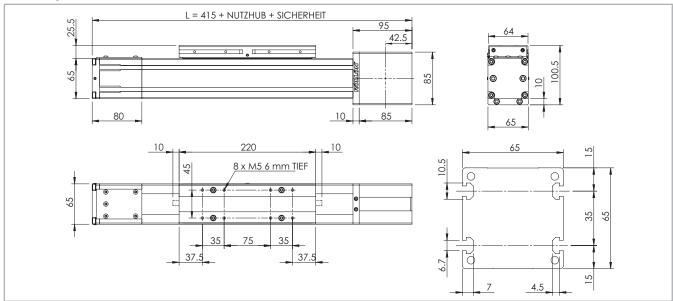

Tab. 5

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ONE 50	22 AT 5	22	0,072
			Tab. 6

Riemenlänge (mm) = 2 x L - 130



ONE 50 - Tragzahlen

Тур	F [N	: × V]	F [!	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 50	809	508	7060	6350	7060	46.2	233	233

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen ONE 80

Detaillierte Informationen finden Sie in den entsprechenden dxf-Dateien, die Sie auf unserer Homepage www.rollon.com herunterladen können.

Abb. 4

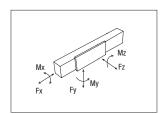
Technische Daten

	Тур
	ONE 65
Maximale Hublänge [mm]	6000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 5
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	1,1
Gewicht Hub Null [kg]	3,5
Gewicht je 100 mm Hub [kg]	0,6
Losbrechmoment [Nm]	1,5
Riemenscheiben-Trägheitsmoment [g mm²]	117200
Schienengröße [mm]	15
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 8

Die Wiederholgenauigkeitist abhangig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofil

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ONE 65	0,060	0,086	0,146
			Tab. 9

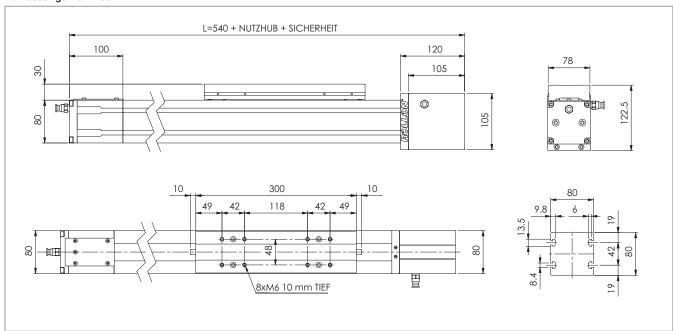

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ONE 65	32 AT 5	32	0,105

Tab. 10

Riemenlänge (mm) = 2 x L - 180


ONE 65 - Tragzahlen

Тур	F [N	: X V]	F [1	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 65	1344	883	48400	22541	48400	320	1376	1376

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 11

Abmessungen ONE 80

Detaillierte Informationen finden Sie in den entsprechenden dxf-Dateien, die Sie auf unserer Homepage www.rollon.com herunterladen können.

Abb. 5

Technische Daten

	Тур
	ONE 80
Maximale Hublänge [mm]	6000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 10
Typ Zahnriemenscheibe	Z 19
Riemenscheibendurchmesser [mm]	60,48
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190
Gewicht des Laufwagens [kg]	2,7
Gewicht Hub Null [kg]	10,5
Gewicht je 100 mm Hub [kg]	1
Losbrechmoment [Nm]	2,2
Riemenscheiben-Trägheitsmoment [g mm²]	388075
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 12

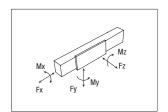
ONE 80 - Tragzahlen

chienengröße [mm]	20
e Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tal

Flächenträgheitsmomente der Aluminiumprofil

Тур	l _x	l _y	l
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ONE 80	0,136	0,195	0,331

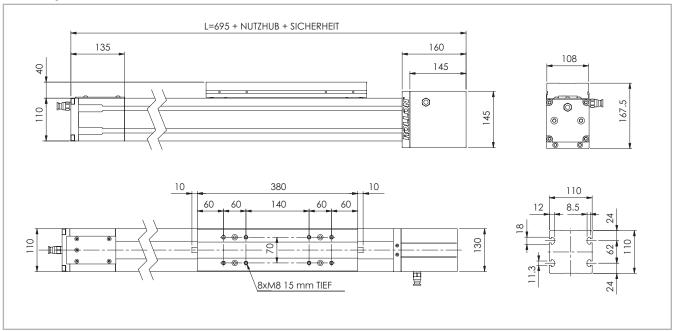
Tab. 13


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ONE 80	32 AT 10	32	0,185

Tab. 14


Riemenlänge (mm) = $2 \times L - 230$

Тур	F [t	: N N	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 80	2258	1306	76800	35399	76800	722	5606	5606

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen ONE 110

Detaillierte Informationen finden Sie in den entsprechenden dxf-Dateien, die Sie auf unserer Homepage www.rollon.com herunterladen können.

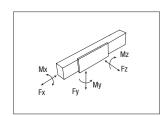
Abb. 6

Technische Daten

	Тур
	ONE 110
Maximale Hublänge [mm]	6000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	50 AT 10
Typ Zahnriemenscheibe	Z 27
Riemenscheibendurchmesser [mm]	85,94
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	270
Gewicht des Laufwagens [kg]	5,6
Gewicht Hub Null [kg]	22,5
Gewicht je 100 mm Hub [kg]	1,4
Losbrechmoment [Nm]	3,5
Riemenscheiben-Trägheitsmoment [g mm²]	$2.193 \cdot 10^{6}$
Schienengröße [mm]	25

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofil


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
ONE 110	0,446	0,609	1,054
			Tab. 17

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ONE 110	50 AT 10	50	0,290

Riemenlänge (mm) = 2 x L - 290

ONE 110 -Tragzahlen

Тур	F [1	: × V]	F _y [N]		F _z M _x [N] [Nm]		M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ONE 110	4980	3300	104800	50321	104800	1126	10532	10532

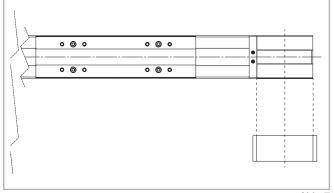
Tab. 16

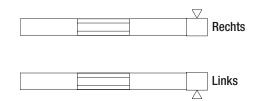
Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 19

Planetengetriebe

Rechts- oder linksseitige Montage in Bezug auf den Antriebskopf




Abb. 7

Die Lineareinheiten der ONE Serie können mit verschiedenen Versionen von Antrieben ausgestattet werden. Bei allen Versionen wird das Antriebsmoment auf die Zahnriemenscheibe mittels Schrumpfscheibe übertragen. Dieses System garantiert einen spielfreien Antrieb während des gesamten Betriebes.

Versionen mit Planetengetriebe

Planetengetriebe werden vor allem in den Bereichen Automation, Handling, und Robotik eingesetzt, wenn hohe Anforderungenan Dynamik und Präzision gestellt werden. Planetengetriebe sind standardmäßig mit Winkelspiel < 3 arcmin bis < 15 arcmin und Übersetzungen von i = 3 bis i = 1000 erhältlich.

Für die Montage von nicht standardmäßigen Planetengetrieben wenden Sie sich bitte an unsere Anwendungstechnik.

Zapfen mit Zentrierung

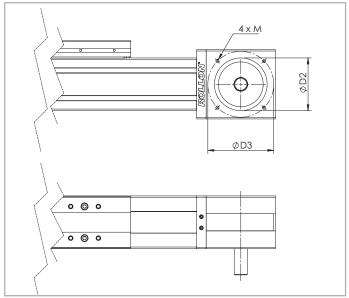
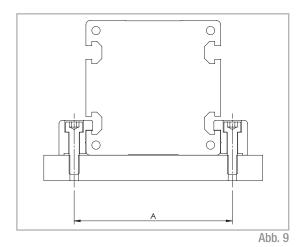


Abb. 8

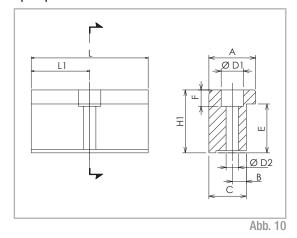

Тур	Zapfentyp	D2	D3	М	Antriebskopf AS links	Antriebskopf AS rechts
ONE 50	AS 12	55	70	M5	VB	VA
ONE 65	AS 15	60	85	M6	VB	VA
ONE 80	AS 20	80	100	M6	VB	VA
ONE 110	AS 25	110	130/160	M8	VB	VA

Zubehör

Befestigung mit Spannpratzen

Aufgrund der verwendeten Führungssysteme, die Belastungen aus allen Richtungen erlauben, können Lineareinheiten der ONE Serie in jeglicher Position montiert werden.

Bitte benutzen Sie die folgenden Befestigungsmethoden.


Тур	A (mm)
ONE 50	62
ONE 65	77
ONE 80	94
ONE 110	130

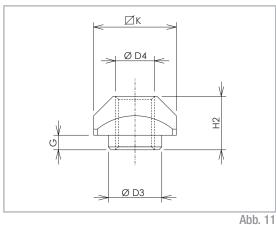
Tab. 21

Achtung:

Die Lineareinheit nicht an den Endköpfen am Ende des Aluminiumprofils befestigen

Spannpratze

Abmessungen (mm)


Тур	Α	H1	В	C	Е	F	D1	D2	L	Lt	Bestell- code
ONE 50	20	14	6	16	10	6	10	5,5	35	17,5	1000958
ONE 65	20	17,5	6	16	11,5	6	9,4	5,3	50	25	1001490
ONE 80	20	20,7	7	16	14,7	7	11	6,4	50	25	1001491
ONE 110	36,5	28,5	10	31	18,5	11,5	16,5	10,5	100	50	1001233
											Tob 22

Tab. 22

Spannpratze

Ein Block aus eloxiertem Aluminium dient zur Befestigung von Lineareinheiten über die seitlichen Nuten am Profil.

T-Nutensteine

Abmessungen (mm)

Тур	D3	D4	G	H2	К	Bestell- code
ONE 50	-	M4	-	3,4	8	1001046
ONE 65	6,7	M5	2,3	6,5	10	1000627
ONE 80	8	M6	3,3	8,3	13	1000043
ONE 110	11	M8	2,8	10,8	17	1000932

Tab. 23

T-Nutensteine

T-Nutensteine aus Stahl zur Verwendung in den Nuten am Profil

Näherungsschalter

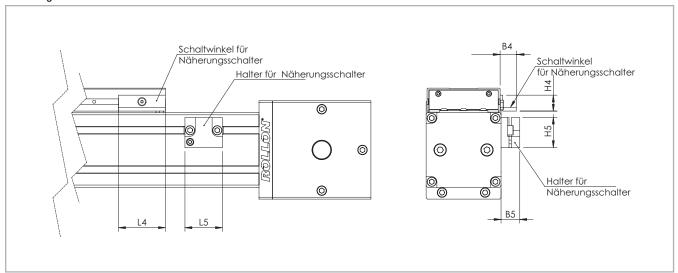


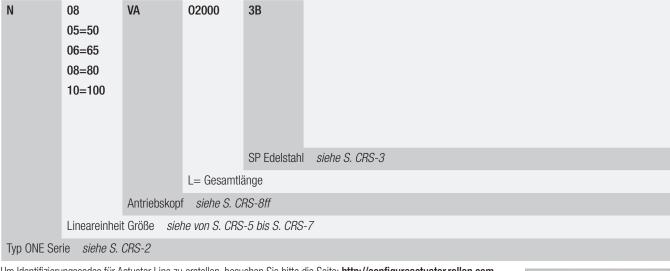
Abb. 12

Halter für Näherungsschalter

Ein Block aus rot-eloxiertem Aluminium, komplett mit Nutensteinen, dient zur Montage von induktiven Näherungsschaltern.

Schaltwinkel für Näherungsschalter

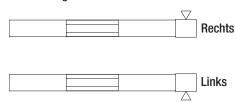
Ein verzinkter Schaltwinkel, der am Laufwagen befestigt wird, dient zum Aktivieren des Näherungsschalters.


Abmessungen (mm)

Тур	В4	В5	L4	L5	H4	Н5	Für Näherungs- schalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
ONE 50	9,5	14	25	29	11,9	22,5	08	G000268	G000211
ONE 65	17,2	20	50	40	17	32	Ø 12	G000267	G000212
ONE 80	17,2	20	50	40	17	32	Ø 12	G000267	G000209
ONE 110	17,2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten ONE Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

Smart System

E-SMART Serie

Beschreibung E-SMART Serie

Abb. 1

E-SMART

Die Baureihe E-SMART umfasst Lineareinheiten mit selbsttragenden Aluminium-Strangpressprofilen, die in vier Baugrößen von 30 bis 100 mm erhältlich sind. Der Antrieb erfolgt durch einen stahlverstärkten Zahnriemen aus Polyurethan. Auf der Einzelschiene sind eine oder mehrere Kugelumlaufführungen montiert.

Zur zusätzlichen Erhöhung der Belastungsfähigkeit sind auch Mehrfachläufer lieferbar.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe E-SMART verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der E-SMART Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der E-SMART Serie besteht aus eloxiertem Aluminium. Für jeden Typ von Lineareinheit sind Laufwagen in zwei Längen verfügbar.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg —— dm³	kN —— mm²	10 ⁻⁶ K	 	J kg . K	Ω . m . 10 ⁻⁹	°C
2,7	70	23,8	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	A	НВ
N — mm²	N — mm²	%	_
250	200	10	75

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung. Lineareinheiten der SMART Serie werden mit folgendem Führungssystem angeboten:

SMART...SP mit Kugelumlauf-Linearführungen

- Eine Kugelumlauf-Linearführung mit Tragzahlen für hohe Belastungen wird in der dafür vorgesehenen Nut im Innern des Aluminiumprofils befestigt.
- Der Laufwagen der Lineareinheit wird auf ein oder zwei vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Wartungsarm
- reduzierte Verfahrensgeräusche

E-SMART Querschnitt

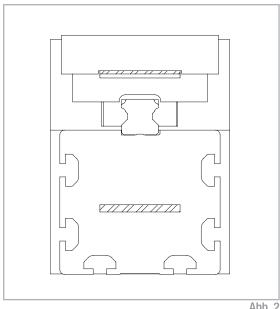
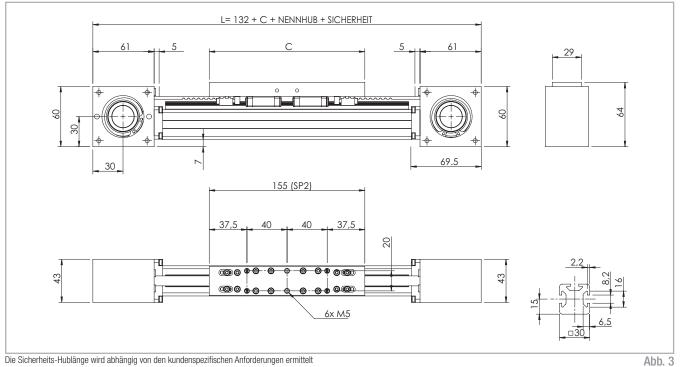



Abb. 2

E-SMART 30 SP2

Abmessungen E-SMART 30

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 30 SP2	0,003	0,003	0,007
			Tab. 5

Antriebsriemen

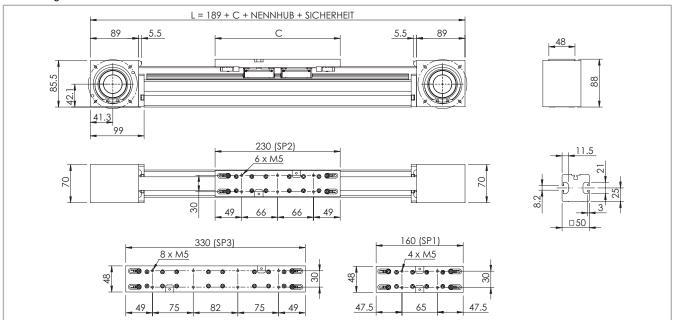
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 30 SP2	10 AT 5	10	0,033
			Tab. 6

Riemenlänge (mm) = $2 \times L - 100 \text{ (SP2)}$

Technische Daten

	Тур
	E-SMART 30 SP2
Maximale Hublänge [mm]	3700
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	10 AT 5
Typ Zahnriemenscheibe	Z 24
Riemenscheibendurchmesser [mm]	38,2
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	120
Gewicht des Laufwagens [kg]	0,28
Gewicht Hub Null [kg]	1,83
Gewicht je 100 mm Hub [kg]	0,16
Losbrechmoment [Nm]	0,15
Riemenscheiben-Trägheitsmoment [g mm²]	57.630
Schienengröße [mm]	12 mini
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 4


E-SMART 30 - Traggahlen

Typ F _x [N]		: X N]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 30 SP2	385	242	7060	6350	7060	46.2	166	166

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

E-SMART 50 SP1 - SP2 - SP3

Abmessungen E-SMART 50

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

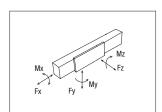
Abb. 4

Technische Daten

	Тур		
	E-SMART 50 SP1	E-SMART 50 SP2	E-SMART 50 SP3
Maximale Hublänge [mm]*1	6120	6050	5950
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05	± 0,05
Maximale Geschwindigkeit [m/s]	4,0	4,0	4,0
Maximale Beschleunigung [m/s²]	50	50	50
Zahnriemen-Typ	25 AT 5	25 AT 5	25 AT 5
Typ Zahnriemenscheibe	Z 40	Z 40	Z 40
Riemenscheibendurchmesser [mm]	63,66	63,66	63,66
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	200	200	200
Gewicht des Laufwagens [kg]	0,54	0,85	1,21
Gewicht Hub Null [kg]	4,89	5,4	6,16
Gewicht je 100 mm Hub [kg]	0,34	0,34	0,34
Losbrechmoment [Nm]	0,35	0,35	0,55
Riemenscheiben-Trägheitsmoment [g mm²]	891.270	891.270	891.270
Schienengröße [mm]	15	15	15
*1) Ein Hub von 11.270 mm (SP1), 11.200 mm (SP2), 11.100 (SP3) ist mittels		lieferbar.	Tab. 8

^{*1)} Ein Hub von 11.270 mm (SP1), 11.200 mm (SP2), 11.100 (SP3) ist mittels Stoßbearbeitung lieferbar.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

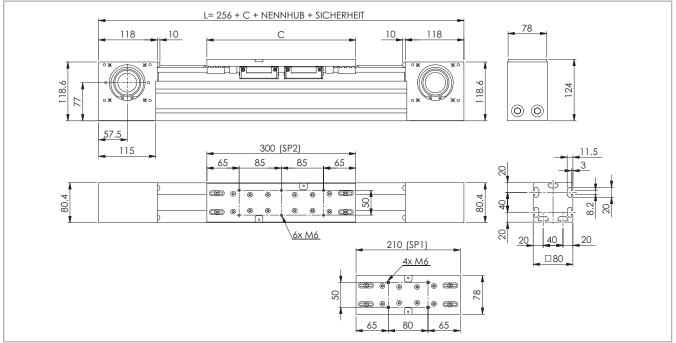

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
E-SMART 50 SP	0,021	0,020	0,041
			Tab. 9

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 50 SP	25 AT 5	25	0,080
			Tab. 10

Riemenlänge (mm) = $2 \times L - 60 \text{ (SP1)}$ 2 x L - 125 (SP2) 2 x L - 225 (SP3)



E-SMART 50 - Tragzahlen

Тур	F _x [N]		F _x [N]		F [I	: vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.		
E-SMART 50 SP1	1050	750	15280	9945	15280	120	90	90		
E-SMART 50 SP2	1050	750	30560	19890	30560	240	1054	1054		
E-SMART 50 SP3	1050	750	45840	29835	45840	360	2582	2582		

E-SMART 80 SP1 - SP2

Abmessungen E-SMART 80

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

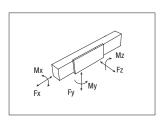
Abb. 5

Technische Daten

	Тур			
	E-SMART 80 SP1	E-SMART 80 SP2		
Maximale Hublänge [mm]*1	6060	5970		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	4,0	4,0		
Maximale Beschleunigung [m/s²]	50	50		
Zahnriemen-Typ	32 AT 10	32 AT 10		
Typ Zahnriemenscheibe	Z 21	Z 21		
Riemenscheibendurchmesser [mm]	66,84	66,84		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	210	210		
Gewicht des Laufwagens [kg]	1,34	1,97		
Gewicht Hub Null [kg]	9,94	11,31		
Gewicht je 100 mm Hub [kg]	0,76	0,76		
Losbrechmoment [Nm]	0,95	1,3		
Riemenscheiben-Trägheitsmoment [g mm²]	938.860	938.860		
Schienengröße [mm]	20	20		
*1) Ein Hub von 11.190 mm (SP1), 11.000 mm (SP2) ist mittels Stoßbearbeit	ung lieferbar.	Tab. 12		

^{*1)} Ein Hub von 11.190 mm (SP1), 11.000 mm (SP2) ist mittels Stoßbearbeitung lieferbar. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

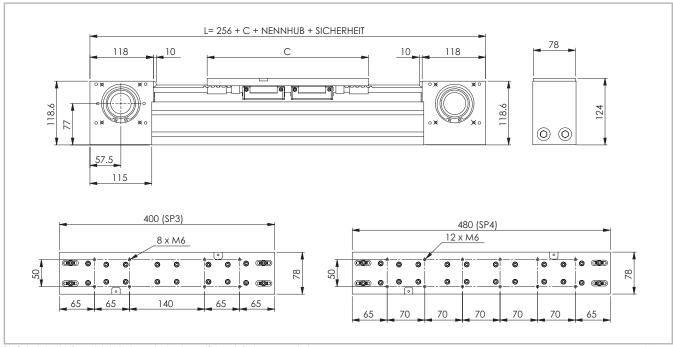

Тур	l _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm⁴]
E-SMART 80 SP	0,143	0,137	0,280
			Tab. 13

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 80 SP	32 AT 10	32	0,186

Riemenlänge (mm) = $2 \times L - 135$ (SP1) 2 x L - 225 (SP2)


E-SMART 80 - Tragzahlen

Тур	F [I	: X N]	F [1	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP1	2523	1672	25630	18318	25630	260	190	190
E-SMART 80 SP2	2523	1672	51260	36637	51260	520	1874	1874

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

E-SMART 80 SP3 - SP4

Abmessungen E-SMART 80

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 6

Technische Daten

	Тур			
	E-SMART 80 SP3	E-SMART 80 SP4		
Maximale Hublänge [mm]*1	5870	5790		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	4,0	4,0		
Maximale Beschleunigung [m/s²]	50	50		
Zahnriemen-Typ	32 AT 10	32 AT 10		
Typ Zahnriemenscheibe	Z 21	Z 21		
Riemenscheibendurchmesser [mm]	66,84	66,84		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	210	210		
Gewicht des Laufwagens [kg]	2,63	3,23		
Gewicht Hub Null [kg]	12,83	14,06		
Gewicht je 100 mm Hub [kg]	0,76	0,76		
Losbrechmoment [Nm]	1,4	1,52		
Riemenscheiben-Trägheitsmoment [g mm²]	938.860	938.860		
Schienengröße [mm]	20	20		
*1) Ein Hub von 11.000 mm (SP3), 10.920 mm (SP4) ist mittels Stoßbearbeit	ung lieferbar.	Tab. 16		

^{*1)} Ein Hub von 11.000 mm (SP3), 10.920 mm (SP4) ist mittels Stoßbearbeitung lieferbar. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _p [10 ⁷ mm⁴]
E-SMART 80 SP	0,143	0,137	0,280
			Tab. 17

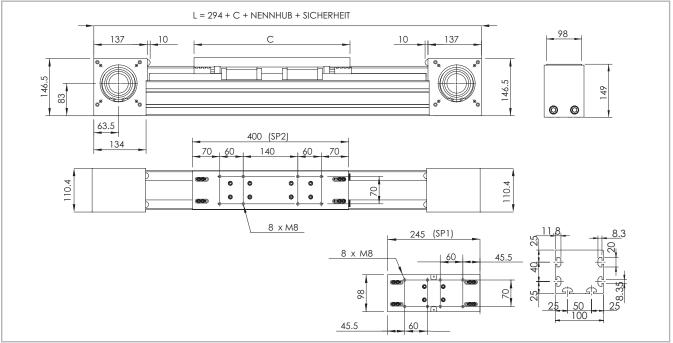

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 80 SP	32 AT 10	32	0,186

Riemenlänge (mm) = $2 \times L - 325$ (SP3) 2 x L - 405 (SP4)

Tab. 18


E-SMART 80 - Tragzahlen

Тур	F [t	x Nj	F [N	: V M]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 80 SP3	2523	1672	76890	54956	76890	780	4870	4870
E-SMART 80 SP4	2523	1672	102520	73274	102520	1040	6920	6920

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

E-SMART 100 SP1 - SP2

Abmessungen E-SMART 100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 7

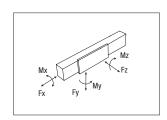
Tab. 22

Technische Daten

	Тур			
	E-SMART 100 SP1	E-SMART 100 SP2		
Maximale Hublänge [mm]*1	6025	5870		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	4,0	4,0		
Maximale Beschleunigung [m/s²]	50	50		
Zahnriemen-Typ	50 AT 10	50 AT 10		
Typ Zahnriemenscheibe	Z 27	Z 27		
Riemenscheibendurchmesser [mm]	85,94	85,94		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	270	270		
Gewicht des Laufwagens [kg]	2,72	4,42		
Gewicht Hub Null [kg]	18,86	22,38		
Gewicht je 100 mm Hub [kg]	1,3	1,3		
Losbrechmoment [Nm]	2,1	2,4		
Riemenscheiben-Trägheitsmoment [g mm²]	4.035.390	4.035.390		
Schienengröße [mm]	25	25		
*1) Ein Hub von 11.155 mm (SP1), 11.000 mm (SP2) ist mittels Stoßbearbeit	ung lieferbar.	Tab. 20		

^{*1)} Ein Hub von 11.155 mm (SP1), 11.000 mm (SP2) ist mittels Stoßbearbeitung lieferbar. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

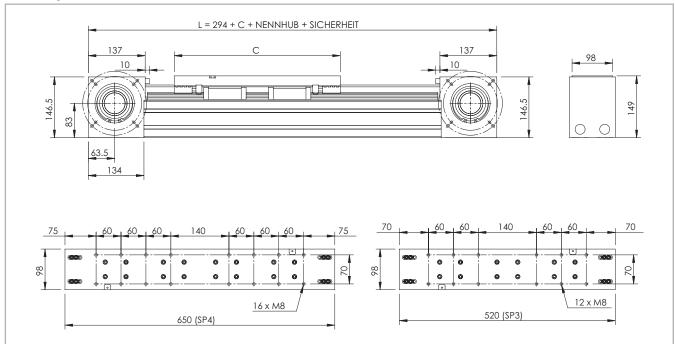

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 100 SP	0,247	0,316	0,536
			Tab. 21

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 100 SP	50 AT 10	50	0,290

Riemenlänge (mm) = $2 \times L - 120 \text{ (SP1)}$ 2 x L - 275 (SP2)



E-SMART 100Tragzahlen

Тур	F [t	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP1	4980	3390	43620	31192	43620	500	450	450
E-SMART 100 SP2	4980	3390	87240	62385	87240	1000	6805	6805

E-SMART 100 SP3 - SP4

Abmessungen E-SMART 100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

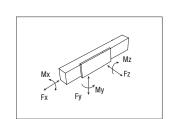
Abb. 8

Technische Daten

	Тур		
	E-SMART 100 SP3	E-SMART 100 SP4	
Maximale Hublänge [mm]*1	5790	5620	
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05	
Maximale Geschwindigkeit [m/s]	4,0	4,0	
Maximale Beschleunigung [m/s²]	50	50	
Zahnriemen-Typ	50 AT 10	50 AT 10	
Typ Zahnriemenscheibe	Z 27	Z 27	
Riemenscheibendurchmesser [mm]	85,94	85,94	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	270	270	
Gewicht des Laufwagens [kg]	5,85	7,34	
Gewicht Hub Null [kg]	25,22	28,25	
Gewicht je 100 mm Hub [kg]	1,3	1,3	
Losbrechmoment [Nm]	2,6	2,8	
Riemenscheiben-Trägheitsmoment [g mm²]	4.035.390	4.035.390	
Schienengröße [mm]	25	25	
*1) Ein Hub von 10.880 mm (SP3), 10.750 mm (SP4) ist mittels Stoßbearbeit	ung lieferbar.	Tab. 24	

^{*1)} Ein Hub von 10.880 mm (SP3), 10.750 mm (SP4) ist mittels Stoßbearbeitung lieferbar. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Тур	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm⁴]
E-SMART 100 SP	0,247	0,316	0,536
			Tah 25


Flächenträgheitsmomente der Aluminiumprofile

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

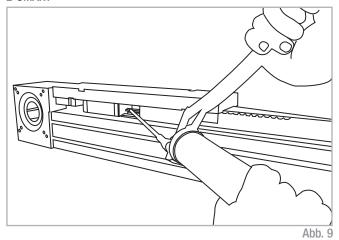
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E-SMART 100 SP	50 AT 10	50	0,290
			Tab. 26

Riemenlänge (mm) = $2 \times L - 395$ (SP3) 2 x L - 252 (SP4)

E-SMART 100 Tragzahlen

Тур	F [I	: NJ	F [1	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
E-SMART 100 SP3	4980	3390	130860	93577	130860	1500	12039	12039
E-SMART 100 SP4	4980	3390	174480	124770	174480	2000	17710	17710

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

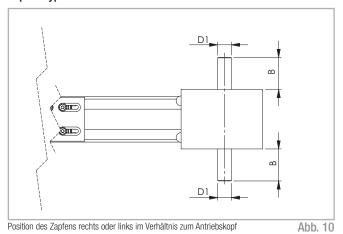

Schmierung

SP-Lineareinheiten mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung SP werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht.

Dieses System garantiert lange Wartungsintervalle: SP-Version: alle 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit einer längeren Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

E-SMART


Nachschmiermenge (je Schmieranschluss):

Тур	Menge [cm³] pro Schmiernippel
E-SMART 30	1
E-SMART 50	0,2
E-SMART 80	0,5
E-SMART 100	0,6

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Zapfen

Zapfen Typ AS

Diese Konfiguration des Antriebskopfes wird mit einem Montagekit erreicht, der als Zubehör geliefert wird. Die Montage auf der linken oder rechten Seite des Antriebskopfes kann vom Kunden entschieden werden

Einheit (mm)

Passend für Typ	Zapfentyp	В	D1	AS Montage kit Bestellcode
E-SMART 30	AS 12	25	12h7	G000348
E-SMART 50	AS 15	35	15h7	G000851
E-SMART 80	AS 20	36,5	20h7	G000828
E-SMART 100	AS 25	50	25h7	G000649

Tab. 29

Motoranschluss

Hohlwelle Typ FP - Standardausführung

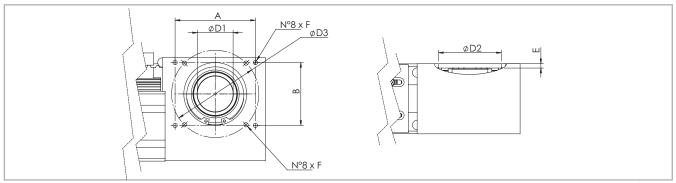
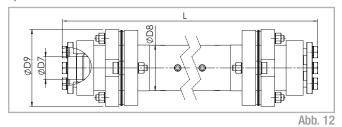
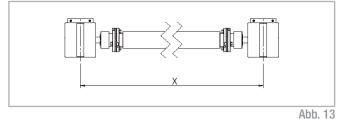


Abb. 11

Einheit (mm)

Anwendbar für Typ	Zapfen- typ	D1	D2	D3	E	F	АхВ	Antriebs- kopf
E-SMART 30	FP 22	22H7	42	68	3	M5	-	2T
E-SMART 50	FP 34	34H7	72	90	2,5	M6	-	2T
E-SMART 80	FP 41	41H7	72	100	5	M6	92x72	2Z
E-SMART 100	FP 50	50H7	95	130	3,5	M8	109x109	2Y


Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.


Tab. 30

Lineareinheiten im Paralleleinsatz

Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Lineareinheiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.

Abmessungen (mm)

Passend für Typ	Zapfentyp	D7	D8	D9	Bestellcode	L
E-SMART 30	AP 12	12	25	45	GK12P1A	L= X-51 [mm]
E-SMART 50	AP 15	15	40	69,5	GK15P1A	L= X-79 [mm]
E-SMART 80	AP 20	20	40	69,5	GK20P1A	L= X-97 [mm]
E-SMART 100	AP 25	25	70	99	GK25P1A	L= X-145 [mm]

Tab. 31

Zubehör

Befestigung mit Spannpratzen oder Nutensteinen

Aufgrund des Kugelumlauf-Führungssystems können die Rollon Lineareinheiten der SMART Serie in jeder beliebigen Position eingebaut werden, da die Einheit dank dieses Systems Belastungen aus allen Richtungen aufnehmen kann.

Zur Befestigung der Lineareinheiten der SMART Serie werden die folgenden Systeme empfohlen:

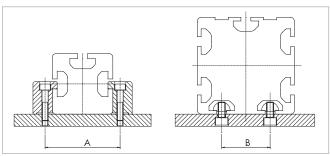
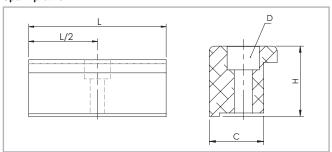


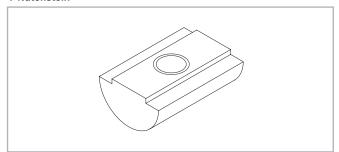
Abb. 14

Trägheitsmoment [g mm 2] C1 + C2 \cdot (X-Y)

	C1	C2	Υ	Weight [Kg] C1+C2 · (X-Y)	
	[g mm²]	[g mm²]	[mm]	C1 [Kg]	C2 [Kg mm]
GK12P	61,456	69	166	0,308	0,00056
GK15P	906,928	464	210	2,28	0,00148
GK20P	1.014,968	464	250	2,48	0,00148
GK25P	5.525,250	4,708	356	6,24	0,0051


Tab. 32

Abmessungen (mm)


Тур	А	В
E-SMART 30	42	-
E-SMART 50	62	-
E-SMART 80	92	40
E-SMART 100	120	50

Tab. 33

Spannpratze

T-Nutenstein

Nutensteine aus Stahl zur Verwendung in den Nuten am Profil Abb. 16

Abb. 15

Abmessungen (mm)

Тур	С	Н	L	D	Bestellcode
E CMART 20	16	17.5	50	ME	1001400
E-SMART 30	16	17,5	50	M5	1001490
E-SMART 50	16	26,9	50	M5	1000097
E-SMART 80	16	20,7	50	M5	1000111
E-SMART 100	31	28,5	100	M10	1002377
					Tab. 34

Einheit (mm)

Тур	Bohrung	Länge	Bestellcode
E-SMART 30	M5	20	6000436
E-SMART 50	M6	20	6000437
E-SMART 80	M6	20	6000437
E-SMART 100	M6	20	6000437

Tab. 35

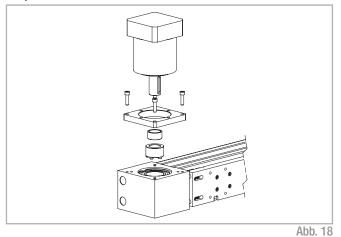
Näherungsschalter

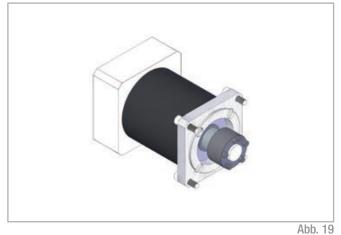


Abb. 17

Halter Näherungsschalter

Aluminiumwinkel, mit T-Muttern zur Befestigung


Schaltwinkel für Näherungsschalter

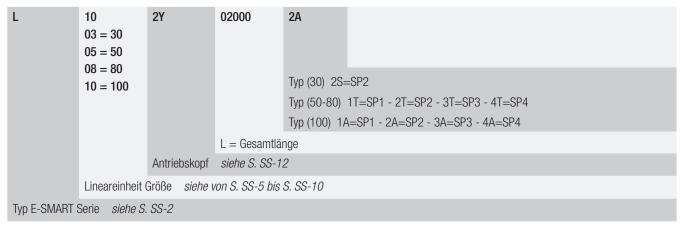

Auf dem Laufwagen montiertes Stahlblech dient zum Aktivieren des Näherungsschalters

Einheit (mm

Zimore (iiiii									
Тур	В4	B5	L4	L5	H4	Н5	Für Näherungs- schalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
E-SMART 30	30	30	30	30	15	30	Ø 8	G000847	G000901
E-SMART 50	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 80	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 100	26	30	15	30	32	30	Ø 8	G000833	G000838

Adapterflansch für die Getriebeeinheit

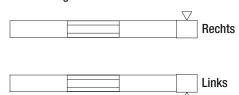
Das Montagekit umfasst: Spannring, Adapterplatte und Befestigungsteile


Typ der Typ des Getriebes **Bestellcode** Einheit (nicht enthalten) Montagekit MP053 G000356 LC050; LP050; PE2 G000357 E-SMART 30 SW030 G000383 MP060; PLE60 G000852 E-SMART 50 LC070; MPV00; LP070; PE3 G000853 SW040 G000854 Р3 G000824 MP080 G000826 LC090; MPV01; LP090; PE4 G000827 MP105 G000830 E-SMART 80 PE3; LP070; LC070 G001078 SP075; PLN090 G000859 SP060; PLN070 G000829 SW040 G000866 SW050 G000895 MP130 G000482 LC120; MPV02; LP120; PE5 G000483 E-SMART 100 LC090; PE4; LP090 G000525 MP105 G000527 SW050 G000717

Tab. 37

Für weitere Getriebetypen wenden Sie sich bitte an unsere Anwendungstechnik.

Bestellschlüssel


Bestellbezeichnung für Lineareinheiten E-SMART Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

R-SMART Serie /

Beschreibung R-SMART Serie



Abb. 20

R-SMART

Die Lineareinheiten der Baureihe R-SMART eignen sich besonders für hohe Belastungen, das Ziehen und Schieben sehr schwerer Massen, anspruchsvolle Arbeitszyklen, freitragenden Einbau bei Gantry-Bauweise und für den Betrieb in automatisierten Industrielinien.

Die Baureihe umfasst Lineareinheiten mit selbsttragenden Aluminium-Strangpressprofilen, die in vier Baugrößen von 120 bis 220 mm erhältlich sind. Der Antrieb erfolgt durch einen stahlverstärkten Zahnriemen aus Polyurethan. Auf der Einzelschiene sind mehrere Kugelumlaufwagen montiert. Zur zusätzlichen Erhöhung der Belastungsfähigkeit sind auch Mehrfachläufer lieferbar.

Diese Einheiten werden vor allem für Anwendungen benutzt, bei denen sehr hohe Belastungen auf sehr engem Raum auftreten und bei denen die Maschinen für die regelmäßigen Wartungsarbeiten nicht angehalten werden können.

>

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe R-SMART verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemescheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der R-SMART Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der R-SMART Serie besteht aus eloxiertem Aluminium. Für jeden Typ von Lineareinheit sind Laufwagen in zwei Längen verfügbar.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 38

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz temperatur
kg	kN	10 ⁻⁶	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	70	23,8	200	880-900	33	600-655

Tab. 39

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
250	200	10	75

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung. Lineareinheiten der SMART Serie werden mit folgendem Führungssystem angeboten:

SMART...SP mit Kugelumlauf-Linearführungen

- Eine Kugelumlauf-Linearführung mit Tragzahlen für hohe Belastungen wird in der dafür vorgesehenen Nut auf dem Aluminiumprofil befestigt.
- Der Laufwagen der Lineareinheit wird auf vier oder sechs vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.

Mit dem beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Wartungsarm
- Geräuscharm

R-SMART Querschnitt

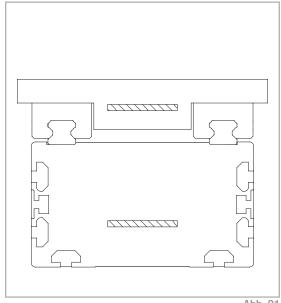
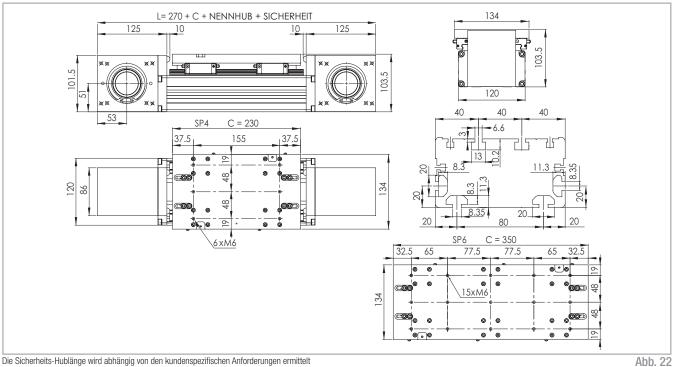



Abb. 21

R-SMART 120 SP4 - SP6

Abmessungen R-SMART 120

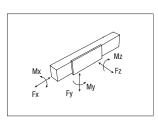
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

+ 0,05 4,0 50 40 AT 10	R-SMART 120 SP6 5930 ± 0,05 4,0 50 40 AT 10
± 0,05 4,0 50	± 0,05 4,0 50
4,0 50	4,0 50
50	50
10 AT 10	40 AT 10
Z 21	Z 21
66,84	66,84
210	210
3	4
12,9	15
0,9	0,9
1,95	2,3
.054.300	1.054.300
15	15
	66,84 210 3 12,9 0,9 1,95 054.300

^{*1)} Ein Hub von 11.200 mm (SP4), 11.080 mm (SP6) ist mittels Stoßbearbeitung lieferbar.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

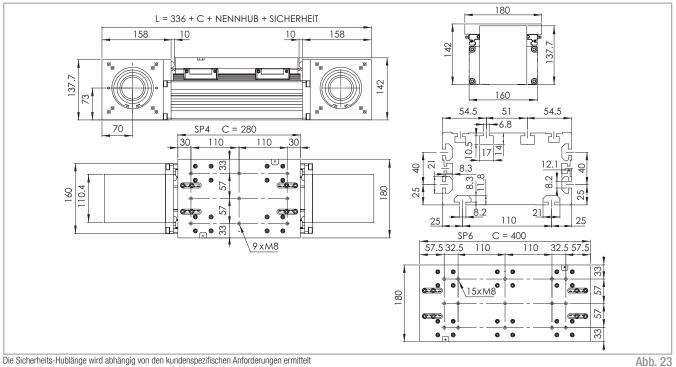

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
R-SMART 120 SP	0,108	0,367	0,475
			Tab. 42

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R-SMART 120 SP	40 AT 10	40	0,23

Riemenlänge (mm) = $2 \times L - 115$ (SP4) 2 x L - 235 (SP6)


R-SMART 120 - Tragzahlen

Тур	F _x [N]		F [N	Ĭ	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 120 SP4	3154	2090	96800	45082	96800	4453	6244	6244
R-SMART 120 SP6	3154	2090	145200	67623	145200	6679	11906	11906

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

R-SMART 160 SP4 - SP6

Abmessungen R-SMART 160

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

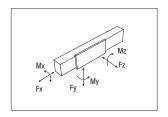
Technische Daten

	Тур			
	R-SMART 160 SP4	R-SMART 160 SP6		
Maximale Hublänge [mm]*1	6000	5880		
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	4,0	4,0		
Maximale Beschleunigung [m/s²]	50	50		
Zahnriemen-Typ	50 AT 10	50 AT 10		
Typ Zahnriemenscheibe	Z 27	Z 27		
Riemenscheibendurchmesser [mm]	85,94	85,94		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	270	270		
Gewicht des Laufwagens [kg]	5,4	7,5		
Gewicht Hub Null [kg]	24,4	27,9		
Gewicht je 100 mm Hub [kg]	1,75	1,75		
Losbrechmoment [Nm]	3,4	3,95		
Riemenscheiben-Trägheitsmoment [g mm²]	4.035.390	4.035.390		
Schienengröße [mm]	20	20		
*1) Ein Hub von 11.200 mm (SP4), 11.080 mm (SP6) ist mittels Stoßbearbeitt	ung lieferbar.	Tab. 45		

^{*1)} Ein Hub von 11.200 mm (SP4), 11.080 mm (SP6) ist mittels Stoßbearbeitung lieferbar. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 160 SP	0,383	1,313	1,696
			Tah 46

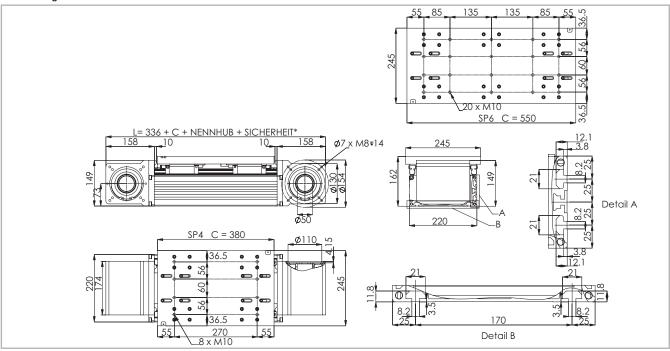

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
R-SMART 160 SP	50 AT 10	50	0,29

Tab. 47

Riemenlänge (mm) = $2 \times L - 150 \text{ (SP4)}$ 2 x L - 270 (SP6)



Тур	F _x [N]		F [N	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 160 SP4	4980	3390	153600	70798	153600	8909	12595	12595
R-SMART 160 SP6	4980	3390	230400	106197	230400	13363	21427	21427

R-SMART 160 SP4 - R-SMART 160 SP6 - Tragzahlen

R-SMART 220 SP4- SP6

Abmessungen R-SMART 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 24

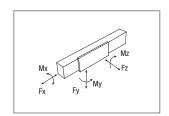
Technische Daten

	Тур		
	R-SMART 220 SP4	R-SMART 220 SP6	
Maximale Hublänge [mm]*1	5900	5730	
Max. Wiederholgenauigkeit [mm]*2	± 0,05	± 0,05	
Maximale Geschwindigkeit [m/s]	4,0	4,0	
Maximale Beschleunigung [m/s²]	50	50	
Zahnriemen-Typ	100 AT 10	100 AT 10	
Typ Zahnriemenscheibe	Z 32	Z 32	
Riemenscheibendurchmesser [mm]	101,86	101,86	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	320	320	
Gewicht des Laufwagens [kg]	12,1	16,95	
Gewicht Hub Null [kg]	41,13	49,93	
Gewicht je 100 mm Hub [kg]	2,45	2,45	
Losbrechmoment [Nm]	4,3	7	
Riemenscheiben-Trägheitsmoment [g mm²]	12.529.220	12.529.220	
Schienengröße [mm]	25	25	
*1) Ein Hub von 11.100 mm (SP4), 10.930 mm (SP6) ist mittels Stoßbearbeit	ung lieferbar.	Tab. 49	

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
R-SMART 220 SP	0,663	3,658	4,321
			Tah 50


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht kg/m
R-SMART 220 SP	100 AT 10	100	0,58

Tab. 51

Riemenlänge (mm) =
$$2 \times L - 130 \text{ (SP4)}$$

 $2 \times L - 300 \text{ (SP6)}$

R-SMART 220 SP4 - R-SMART 220 SP6 - Tragzahlen

Туре	F _x F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R-SMART 220 SP4	9960	7380	258800	116833	258800	21998	28468	28468
R-SMART 220 SP6	9960	7380	388200	175249	388200	32997	50466	50466

Schmierung

SP-Lineareinheiten mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung SP werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht. Dieses System garantiert lange Wartungsintervalle: SP-Version: alle 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit einer längeren Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

R-SMART

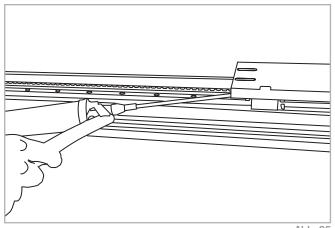
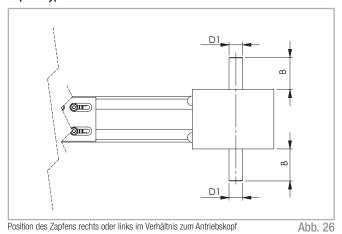


Abb. 25

- Adapter der Fettpresse auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.


Nachschmiermenge (je Schmieranschluss):

Тур	Menge [cm³] pro Schmiernippel
R-SMART 120	0,7
R-SMART 160	1,4
R-SMART 220	2,4

Tab. 53

Zapfen

Zapfen Typ AS

Diese Konfiguration des Antriebskopfes wird mit einem Montagekit erreicht, der als Zubehör geliefert wird. Die Montage auf der linken oder rechten Seite des Antriebskopfes kann vom Kunden entschieden werden.

Einheit (mm

Passend für Typ	Zapfentyp	В	D1	AS Montage kit Bestellcode
R-SMART 120	AS 20	36	20h7	G000828
R-SMART 160	AS 25	50	25h7	G000649
R-SMART 220	AS 25	50	25h7	G000649

Tab. 54

Motoranschluss

Hohlwelle Typ FP - Standardausrüstung

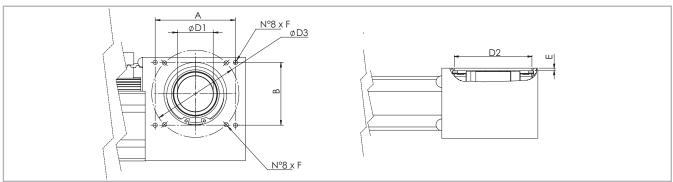


Abb. 27

Einheit (mm)

Anwendbar für Typ	Zapfen Typ	D1	D2	D3	E	F	АхВ	Antriebs- kopf
R-SMART 120	FP 41	41H7	72	100	3,5	M6	92x72	2Y
R-SMART 160	FP 50	50H7	95	130	3,5	M8	109x109	2Y
R-SMART 220	FP 50	50H7	110	130	4	M8	109x109	2Y

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Zubehör

Befestigung mit Spannpratzen oder Nutensteinen

Aufgrund des Kugelumlauf-Führungssystems können die Rollon Lineareinheiten der R-SMART Serie in jeder beliebigen Position eingebaut werden, da die Einheit dank dieses Systems Belastungen aus allen Richtungen aufnehmen kann.

Zur Befestigung der Lineareinheiten der R-SMART Serie werden die folgenden Systeme empfohlen:

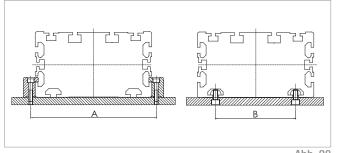


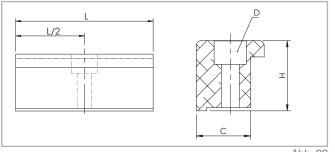
Abb. 28

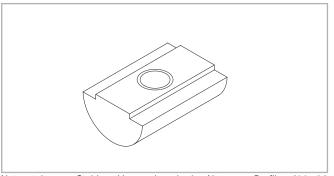
Einheit (mm)

	А	В
R-SMART 120	132	80
R-SMART 160	180	110
R-SMART 220	240	170

Tab. 56

Spannpratze




Abb. 29

Abmessungen (mm

Passend für Typ	С	Н	L	D	Bestellcode
R-SMART 120	16	20,7	50	M5	1000111
R-SMART 160	31	28,5	100	M10	1002377
R-SMART 220	31	28,5	100	M10	1002377

Tab. 57

T-Nutenstein

Nutensteine aus Stahl zur Verwendung in den Nuten am Profil Abb. 30

Einheit (mm)

Passend für Typ	Bohrung	Länge	Bestellcode
R-SMART 120	M6	20	6000437
R-SMART 160	M6	20	6000437
R-SMART 160	M8	20	6001544
R-SMART 220	M6	20	6000437
R-SMART 220	M8	20	6001544

Näherungsschalter

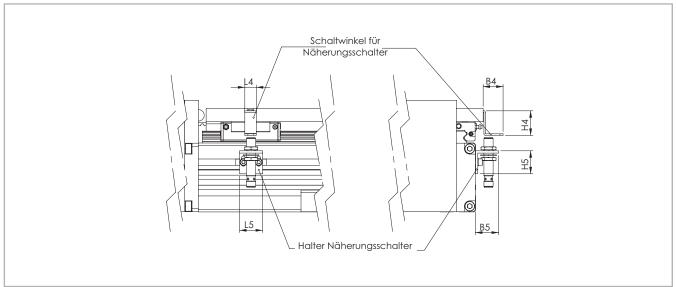


Abb. 31

Halter Näherungsschalter

Aluminiumwinkel, mit T-Muttern zur Befestigung

Schaltwinkel für Näherungsschalter

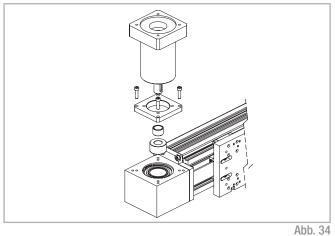
Auf dem Laufwagen montiertes Stahlblech dient zum Aktivieren des Näherungsschalters

Einheit (mm)

Passend für Typ	В4	B5	L4	L5	Н4	Н5	Für Näherungs- schalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
R-SMART 120	26	30	15	30	32	30	Ø 8	G000833	G000844
R-SMART 160	26	30	15	30	32	30	Ø 8	G000833	G000838
R-SMART 220	26	30	15	30	32	30	Ø 8	G000833	G000838

Tab. 59

Montagekits


Um eine Achse der R-SMART Serie mit anderen Achsen zu einem Mehrachssystem zu kombinieren, bietet ROLLON entsprechende Befestigungskits an. Zur Montage des Befestigungsmaterials wird an beiden Enden der Achse eine definierte Länge ohne Führungsschiene benötigt. Die verfügbaren Kombinationen und Längen sind in der folgenden Tabelle ersichtlich.

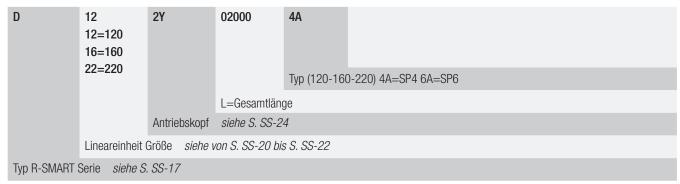

	Kit	Bestellcode	X Länge Profil ohne Führungsschiene (mm)
1	R-SMART 120 on E-SMART 50	G000899*	60
1	R-SMART 120 on E-SMART 80	G000863*	90
1-	R-SMART 160 on E-SMART 80	G000902*	90
1-	R-SMART 160 on E-SMART 100	G000903*	110
110	R-SMART 220 on E-SMART 100	G001207	110

^{*} Auf der E-SMART-Platte sind zusätzliche Befestigungsbohrungen notwendig.

Tab. 60

Adapterflansch für die Getriebeeinheit

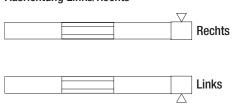
Das Montagekit umfasst: Spannring, Adapterplatte und Befestigungsteile


Typ der Einheit	Typ des Getriebes (nicht enthalten)	Bestellcode Montagekit
	P3	G000824
	MP080	G000826
	LC90; MPV01; LP090; PE4	G000827
R-SMART 120	MP105	G000830
n-SIVIANT 120	PE3; LP070; LC070	G001078
	SP060; PLN070	G000829
	SP070; PLN090	G000859
	SW040	G000866
	MP130	G000482
	LC120; MPV02; LP120; PE5	G000483
R-SMART 160	LC090; LP090; PE4	G000525
n-SIVIANT TOU	MP105	G000527
	SP075; PLN090	G000526
	SW050	G000717
	MP130	G001045
R-SMART 220	MP105	G001047
	LC120; MPV02; LP120; PE5	G001049

Tab. 61

Für weitere Getriebetypen wenden Sie sich bitte an unsere Anwendungstechnik

Bestellschlüssel / v


Bestellbezeichnung für Lineareinheiten R-SMART Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

S-SMART Serie

Beschreibung S-SMART Serie

Abb. 36

S-SMART

Die Lineareinheiten der Baureihe S-SMART wurden entwickelt, um vertikale Bewegungen bei Gantry-Bauweise zu ermöglichen oder für Anwendungen, bei denen das Aluminiumprofil beweglich ist und der Läufer fest steht.

Die Baureihe umfasst Lineareinheiten mit selbsttragenden Aluminium-Strangpressprofilen, die in drei Baugrößen von 50 bis 80 mm erhältlich sind. Es handelt sich um ein biegesteifes System, das ideal zur Schaffung einer Z-Achse durch Verwendung einer linearen Führungsschiene geeignet ist.

Darüber hinaus wurde die Baureihe S-SMART so entworfen und konfiguriert, dass sie mittels einem Montagekit einfach mit der R-SMART Serie montiert werden kann.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe S-SMART verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der S-SMART Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der S-SMART Serie besteht aus eloxiertem Aluminium.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Remainder	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 62

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz temperatur
kg	kN	10-6	W	J ———	Ω . m . 10^{-9}	°C
dm ³	mm ²	K	m . K	kg . K		Ŭ
2,7	70	23,8	200	880-900	33	600-655

Tab. 63

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N —	N —	%	_
mm ²	mm² 200	10	75

Tab. 64

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung. Lineareinheiten der SMART Serie werden mit folgendem Führungssystem angeboten:

SMART...SP mit Kugelumlauf-Linearführungen

- Eine Kugelumlauf-Linearführung mit Tragzahlen für hohe Belastungen wird in der dafür vorgesehenen Nut im Innern des Aluminiumprofils befestigt.
- Der Laufwagen der Lineareinheit wird auf ein oder zwei vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Wartungsarm
- reduzierte Verfahrensgeräusche

S-SMART Querschnitt

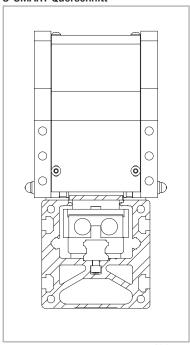
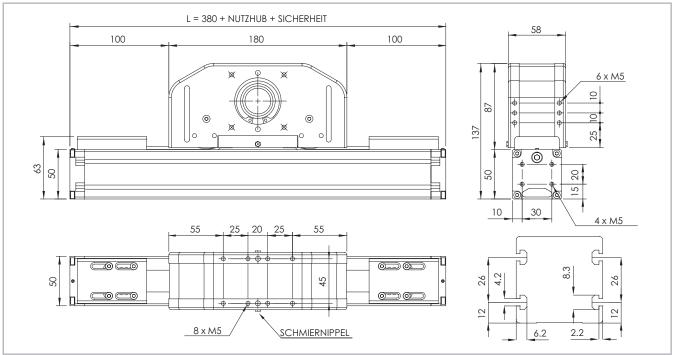



Abb. 37

S-SMART 50 SP

Abmessungen S-SMART 50 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

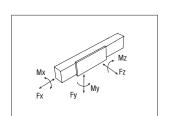
Abb. 38

Technische Daten

	Тур
	S-SMART 50 SP
Maximale Hublänge [mm]	1000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	22 AT 5
Typ Zahnriemenscheibe	Z 23
Riemenscheibendurchmesser [mm]	36,61
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	115
Gewicht des Laufwagens [kg]	2
Gewicht Hub Null [kg]	5,7
Gewicht je 100 mm Hub [kg]	0,4
Losbrechmoment [Nm]	0,25
Schienengröße [mm]	12 mini
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 65

S-SMART 50 SP - Tragzahlen

Flachentragheitsmomente der A	luminiumprofile
-------------------------------	-----------------

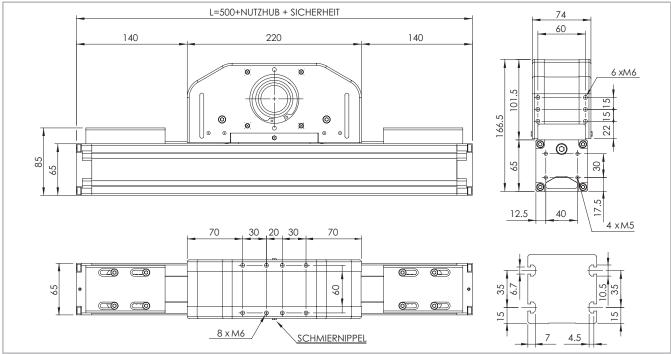

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _p [10 ⁷ mm⁴]
S-SMART 50 SP	0,025	0,031	0,056
			Tab. 66

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
S-SMART 50 SP	22 AT 5	22	0,072
			Tab. 67

Riemenlänge (mm) = L + 30



Тур	F [1	: X N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 50 SP	809	508	7060	6350	7060	46,2	233	233

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

S-SMART 65 SP

Abmessungen S-SMART 65 SP

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

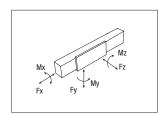
Abb. 39

Technische Daten

	Туре
	S-SMART 65 SP
Maximale Hublänge [mm]	1500
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 5
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	3,6
Gewicht Hub Null [kg]	7,3
Gewicht je 100 mm Hub [kg]	0,6
Losbrechmoment [Nm]	0,60
Schienengröße [mm]	15
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 69

S-SMART 65 SP - Tragzahlen

Flächenträgheitsmon	nente der <i>l</i>	Aluminiump	rofile

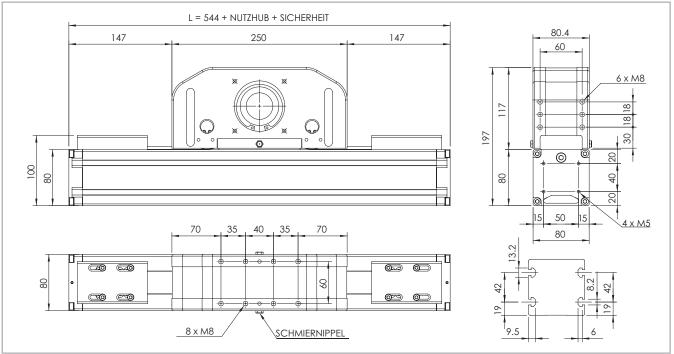

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
S-SMART 65 SP	0,060	0,086	0,146
			Tab. 70

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
S-SMART 65 SP	32 AT 5	32	0,105
			Tab. 71

Riemenlänge (mm) = L + 35



Тур	F [N	: Ň]	F [N	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 65 SP	1344	960	30560	19890	30560	240	1213	1213

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

S-SMART 80 SP

S-SMART 80 SP Dimensions

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

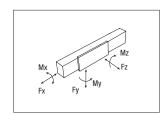
Abb. 40

Technische Daten

	Туре
	S-SMART 80 SP
Maximale Hublänge [mm]	2000
Max. Wiederholgenauigkeit [mm]*1	± 0,05
Maximale Geschwindigkeit [m/s]	4,0
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 10
Typ Zahnriemenscheibe	Z 21
Riemenscheibendurchmesser [mm]	66,85
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	210
Gewicht des Laufwagens [kg]	6,3
Gewicht Hub Null [kg]	12,6
Gewicht je 100 mm Hub [kg]	1
Losbrechmoment [Nm]	1,65
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 73

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]
S-SMART 80 SP	0,136	0,195	0,331


Tab. 74

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

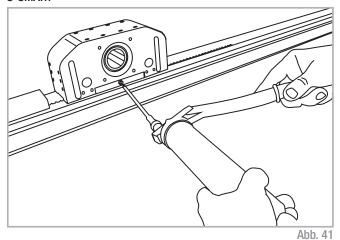
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
S-SMART 80 SP	32 AT 10	32	0,186
			Tab. 75

Riemenlänge (mm) = L + 50

S-SMART 80 SP - Tragzahlen

Тур	F [1	: N]	F [1	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
S-SMART 80 SP	2523	1672	51260	36637	51260	520	3742	3742

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


Schmierung

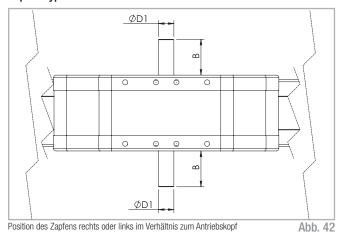
SP-Lineareinheiten mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung SP werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und

folglich die Lebensdauer erhöht. Dieses System garantiert lange Wartungsintervalle: SP-Version: alle 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit einer längeren Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

S-SMART

Nachschmiermenge:


Тур	Menge [cm³] pro Schmiernippel
S-SMART 50	2
S-SMART 65	0,2
S-SMART 80	0,5

Tab. 77

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, großeVerschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Zapfen

Zapfen Typ AS

Diese Konfiguration des Antriebskopfes wird mit einem Montagekit erreicht, das als Zubehör geliefert wird. Die Montage auf der linken oder rechten Seite des Antriebskopfes kann vom Kunden entschieden werden.

Einheit (mm)

Passend für Typ	Zapfentyp	В	D1	AS Montage kit Bestellcode
S-SMART 50	AS 12	26	12h7	G000652
S-SMART 65	AS 15	35	15h7	G000851
S-SMART 80	AS 20	40	20h7	G000828

Tab. 78

Motoranschluss

Hohlwelle Typ FP - Standardausrüstung

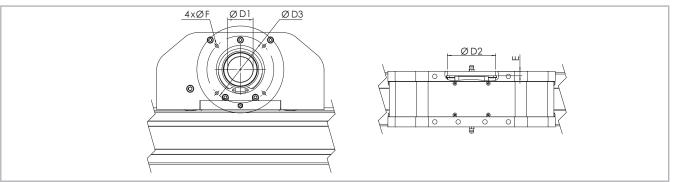
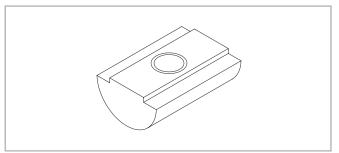


Abb. 43

Einheit (mm))

Passend für Typ	Zapfen Typ	D1	D2	D3	E	F	Antriebs- kopf
S-SMART 50	FP 26	26H7	47	75	2,5	M5	2YA
S-SMART 65	FP 34	34H7	62	96	2,5	M6	2YA
S-SMART 80	FP 41	41H7	72	100	5	M6	2ZA

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.


Tab. 79

Zubehör

Aufgrund des Kugelumlauf-Führungssystems können die Rollon Lineareinheiten der SMART Serie in jeder beliebigen Position eingebaut werden, da die Einheit dank dieses Systems Belastungen aus allen Richtungen aufnehmen kann.

Zur Befestigung der Lineareinheiten der SMART Serie werden die folgenden Systeme empfohlen:

T-Nutenstein

Nutensteine aus Stahl zur Verwendung in den Nuten am Profil Abb. 44

Einheit (mm))

Passend für Typ	Bohrung	Länge	Bestellcode
S-SMART 50	M4	8	1001046
S-SMART 65	M5	10	1000627
S-SMART 80	M6	13	1000043

Tab. 80

Näherungsschalter

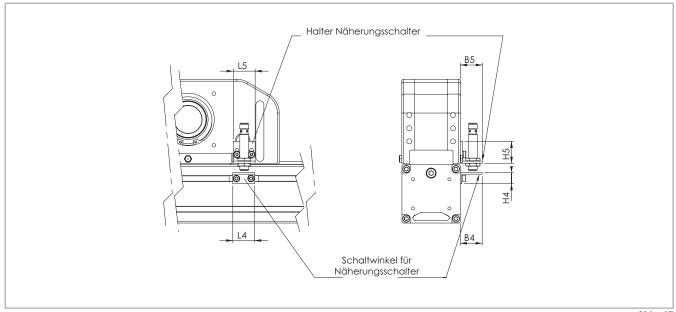
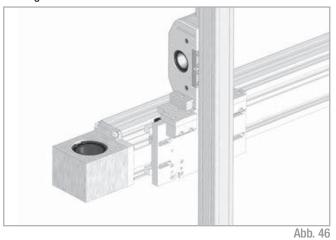


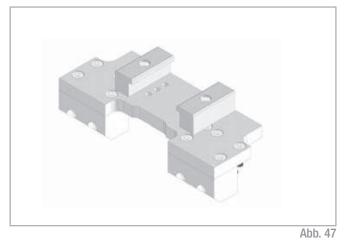
Abb. 45

Halter Näherungsschalter

Aluminiumwinkel mit T-Muttern zur Befestigung

Schaltwinkel für Näherungsschalter

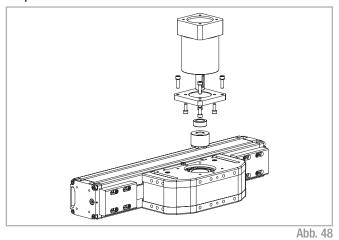

Auf dem Laufwagen montiertes Stahlblech dient zum Aktivieren des Näherungsschalters


Einheit (mm)

Passend für Typ	В4	B5	L4	L5	H4	Н5	Für Näherungss- chalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
S-SMART 50	30	30	30	30	15	30	Ø8 / Ø12	G000835	G000834 / G001408
S-SMART 65	30	30	30	30	15	30	Ø8/Ø12	G000836	G000834 / G001408
S-SMART 80	30	30	30	30	15	30	Ø8/Ø12	G000837	G000834 / G001408

Tab. 81

Montagekits


Wenn zwei Einheiten für eine Y-Z-Baugruppe bestellt werden, muss spezifiziert werden, dass die beiden Einheiten zusammen montiert werden. Nur auf diese Weise kann sichergestellt werden, dass die Bohrungen korrekt angebracht werden, um das Montagekit verwenden zu können.

Bei	spiel Achsenkombination	Bestellcode Montagekit
1907	S-SMART 50 on E-SMART 50	G000647
	S-SMART 50 on R-SMART 120	G000910
	S-SMART 65 on E-SMART 50	G000654
	S-SMART 65 on E-SMART 80	G000677
	S-SMART 65 on R-SMART 120	G000911
	S-SMART 65 on R-SMART 160	G000912
1907	S-SMART 80 on E-SMART 80	G000653
	S-SMART 80 on E-SMART 100	G000688
	S-SMART 80 on R-SMART 120	G000990
	S-SMART 80 on R-SMART 160	G000913

Tab. 82

 $Kombinations be is piele\ von\ S-SMART/E-SMART,\ siehe\ Seite\ SS-42.$

Adapterflansch für die Getriebeeinheit

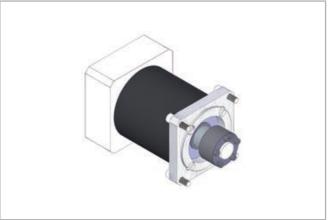
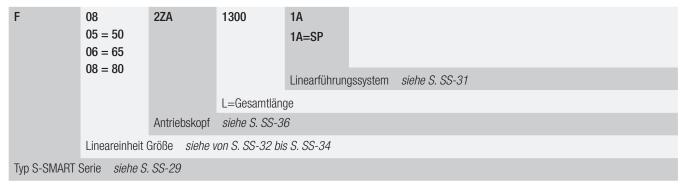


Abb. 49

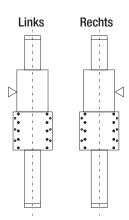
Das Montagekit umfasst: Spannring, Adapterplatte und Befestigungsteile


Typ der Einheit	Typ des Getriebes (nicht enthalten)	Bestellcode Montagekit
S-SMART 50	MP060	G000566
5-SIVIANT 50	LC050; PE2; LP050	G001444
	MP080	G000529
C CMADT CE	MP060; PLE060	G000531
S-SMART 65	SW030	G000748
	PE3; LP070; LC070	G000530
	P3	G000824
	MP080	G000826
	LC090; MPV01; LP090; PE4	G000827
S-SMART 80	PLE080	G000884
	SP060; PLN070	G000829
	SW040	G000866
	SW050	G000895
	SW050	G000895

Tab. 83

Für weitere Getriebetypen wenden Sie sich bitte an unsere Anwendungstechnik

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten S-SMART Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

Mehrachsensysteme /

Bisher mussten Maschinenhersteller alle für den Einbau von zwei oder mehr Achsen erforderlichen Verbindungselemente selbst zeichnen und herstellen. Zur Unterstützung der Kunden hat Rollon eine Reihe von Zubehörteilen wie Verbindungselemente und Adapterplatten für die Montage von Mehrachsensystemen entwickelt. Zusätzlich zu den Standardelementen, kann Rollon auch Adapterplatten für Sonderanwendungen liefern.

Anwendungsbeispiele:

Ein-Achsen-System

A - Achse X: E-SMART

Zwei-Achsen-System Y-Z

C - Lineareinheiten: - Achse Y 2 E-SMART - Achse Z 1 S-SMART

Verbindungselemente: Befestigungsplatten-Set S-SMART

(Achse Z) auf 2 E-SMART (Achse Y)

System mit zwei parallelen Achsen

B - Lineareinheiten: - 2 E-SMART **Verbindungselemente:** Einbausatz für Parallel-Einsatz

Drei-Achsen-System X-Y-Z

D - Lineareinheiten: - Achse X 2 E-SMART - Achse Y 2 E-SMART - Achse Z 1 S-SMART

Verbindungselemente: 2 Klammersets für die Befestigung der E-SMART Einheiten (Achse X) auf den E-SMART Einheiten (Achse Y) Befestigungsplatten-Set S-SMART (Achse Z) auf 2E-SMART (Achse Y) Einbausetz für Parallel-Einsatz

Zwei-Achsen-System Y-Z

E - Lineareinheiten - Achse Y 1 R-SMART - Achse Z 1 S-SMART **Verbindungselemente:** Befestigungsplatten-Set S-SMART (Achse Z) auf R-SMART (Achse Y).

Drei-Achsen-System X-Y-Z

F - Lineareinheiten - Achse X2 E-SMART - Achse Y1 R-SMART - Achse Z1 S-SMART

Verbindungselemente: 2 Klammersets für die Befestigung der R-SMART-Einheit (Achse Y) auf 2 E-SMART-Einheiten (Achse X) Befestigungsplatten-Set S-SMART (Achse Z) auf R-SMART (Achse Y) Einbauset für Parallel-Einsatz

ECO Serie

Beschreibung ECO Serie

Abb. 1

Die Linearachsen der Produktfamilie Eco System bestehen aus einem selbsttragenden Aluminium-Strangpressprofil und einem Antrieb durch einen stahlverstärkten Zahnriemen aus Polyurethan mit AT-Zahnprofil.

- Es sind drei verschiedene Baugrößen erhältlich: 60, 80 und 100 mm
- Die Baureihe ist mit Kugelumlaufführung oder Laufrollenführung erhältlich.
- Das reduzierte Gewicht wird durch den leichten Rahmen und die Aluminiumläufer erreicht.
- Hohe Verfahrgeschwindigkeiten

Die Lineareinheiten Eco System werden mit zwei Führungssystemen angeboten:

ECO SYSTEM - SP

Im Innern des Aluminiumprofils befindet sich eine wartungsarme Kugelumlauf-Linearführung.

ECO SYSTEM - CI

Vier Laufrollen mit gotischem Laufbahnprofil, die auf zwei Rundstangen aus gehärtetem Stahl geführt werden, die im Innern des Aluminiumprofils eingestemmt sind.

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der ECO Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

malen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Der Antriebsriemen läuft an der Oberseite des Aluminiumprofils in Führungsnuten und deckt dadurch das sich im Profilinnern befindliche Antriebs- bzw. Führungssystem ab.

selbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil

vorgegebenen maximalen Zahnriemenbreite und Einstellung einer opti-

Antriebsriemen

In den Lineareinheiten der ECO Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wech-

Laufwagen

Der Laufwagen der Lineareinheiten der ECO Serie besteht aus eloxiertem Aluminium. Für jeden Typ von Lineareinheit sind Laufwagen in zwei Längen verfügbar. An der Oberseite des Laufwagens befinden sich T-Nuten zur einfachen Montage der Anschlusskonstruktion des Anwenders.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10 ⁻⁶	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N mm ²	N — mm²	%	_
205	165	10	60-80

Führungssystem

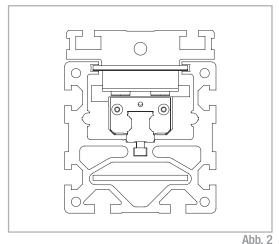
Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung. Lineareinheiten der ECO Serie werden mit zwei Führungssystemen angeboten:

ECO...SP mit Kugelumlauf-Linearführungen

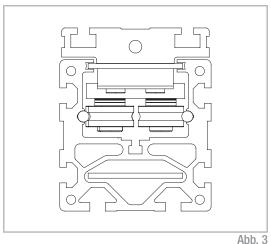
- Eine Kugelumlauf-Linearführung mit Tragzahlen für hohe Belastungen wird in der dafür vorgesehenen Nut im Innern des Aluminiumprofils
- Der Laufwagen der Lineareinheit wird auf zwei vorgespannte Linearführungswagen montiert.
- Aufgrund der vier Kugelreihen, die sich in jedem Kugelumlaufwagen befinden, kann das Linearführungssystem höchste Kräfte aus allen Richtungen aufnehmen.
- Die Linearführungswagen sind zum Schutz gegen das Eindringen von Schmutz allseitig mit Abstreifern versehen. Bei sehr hohem Verschmutzungsgrad kann ein zusätzlicher Abstreifer montiert werden.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- An den Stirnseiten der Linearführungswagen sind Schmierstoffreservoirs angebracht. Diese geben kontinuierlich Schmierstoff an die Kugelreihen ab und ermöglichen so eine Langzeitschmierung.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Wartungsarm (abhängig vom Anwendungsfall)
- Reduzierte Laufgeräusche
- Geeignet für lange Hübe

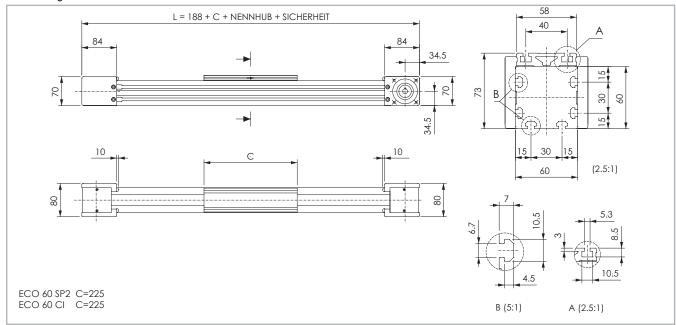

ECO...Cl mit Laufrollenführung

- Zwei Rundstahlwellen aus gehärtetem Stahl (58/60HRC) werden in die dafür vorgesehenen Nuten im Innern des Aluminiumprofils eingestemmt.
- Im Laufwagen sind sechs doppelreihig Kugel gelagerte Laufrollen mit gotischem Laufbahnprofil montiert. Dadurch wird je Laufrolle ein Zweipunkt-Kontakt mit den Rundstahlwellen hergestellt, der eine Kraftaufnahme aus allen Richtungen erlaubt.
- Die sechs Laufrollen sind auf Stahlbolzen im Laufwagen gelagert, zwei davon exzentrisch, um das System spielfrei einstellen zu können.
- Um die Laufbahnen sauber und geschmiert zu halten, sind an den Laufwagenenden Fließfett getränkte Filzstücke eingesetzt.
- Der Antriebsriemen wird über die gesamte Länge im Profil geführt, so wird ein Durchhängen vermieden und die Linearführung geschützt.


Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Gute Positioniergenauigkeit
- Hohe Laufruhe
- Wartungsarm (abhängig vom Anwendungsfall)

ECO SP Querschnitt



ECO CI Querschnitt

ECO 60 SP2 - ECO 60 CI

Abmessungen ECO 60 SP2 - ECO 60 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 4

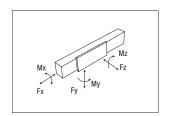
Technische Daten

	Ту	γp
	ECO 60 SP2	ECO 60 CI
Mayimala Huhlönga [mm]	3700	6000
Maximale Hublänge [mm]	0.00	0000
Max. Wiederholgenauigkeit [mm]*1	± 0,05	± 0,05
Maximale Geschwindigkeit [m/s]	4,0	1,5
Maximale Beschleunigung [m/s²]	50	1,5
Zahnriemen-Typ	32 AT 5	32 AT 5
Typ Zahnriemenscheibe	Z 28	Z 28
Riemenscheibendurchmesser [mm]	44,56	44,56
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	140	140
Gewicht des Laufwagens [kg]	0,51	0,80
Gewicht Hub Null [kg]	3,5	3,2
Gewicht je 100 mm Hub [kg]	0,45	0,68
Losbrechmoment [Nm]	0,24	0,32
Riemenscheiben-Trägheitsmoment [g mm²]	163000	163000
Schienengröße [mm]	12 mini	Ø6
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsa	ırt	Tab. 4

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ECO 60	0,037	0,054	0,093
			Tab. 5


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ECO 60	32 AT 5	32	0,105

Tab. 6

Riemenlänge (mm) SP2/CI = 2 x L - 166

ECO 60 SP2 - ECO 60 CI - Tragzahlen

Тур	F _x [N]		F _x F _y F _z M _x [N] [Nm]		M _y [Nm]	M _z [Nm]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 60 SP2	1344	922	7060	6350	7060	46.2	325	325
ECO 60 CI	1344	922	1648	3072	1110	24,4	33	76,2

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI

Abmessungen ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 5

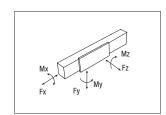
Technische Daten

	Тур			
	ECO 80 SP2	ECO 80 SP1	ECO 80 Cl	
Maximale Hublänge [mm]	6000	6000	6000	
Max. Wiederholgenauigkeit [mm]*1	± 0,05	± 0,05	± 0,05	
Maximale Geschwindigkeit [m/s]	5,0	5,0	1,5	
Maximale Beschleunigung [m/s²]	50	50	1,5	
Zahnriemen-Typ	50 AT 5	50 AT 5	50 AT 5	
Typ Zahnriemenscheibe	Z 37	Z 37	Z 37	
Riemenscheibendurchmesser [mm]	58,89	58,89	58,89	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	185	185	185	
Gewicht des Laufwagens [kg]	1,6	0,9	2,1	
Gewicht Hub Null [kg]	7,7	5,9	8,2	
Gewicht je 100 mm Hub [kg]	0,8	0,8	0,65	
Losbrechmoment [Nm]	0,75	0,75	0,75	
Riemenscheiben-Trägheitsmoment [g mm²]	706000	706000	706000	
Schienengröße [mm] *1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsa	15 rt	15	Ø6 Tab. 8	

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ECO 80	0,117	0,173	0,280

Tab. 9


Antriebsriemen

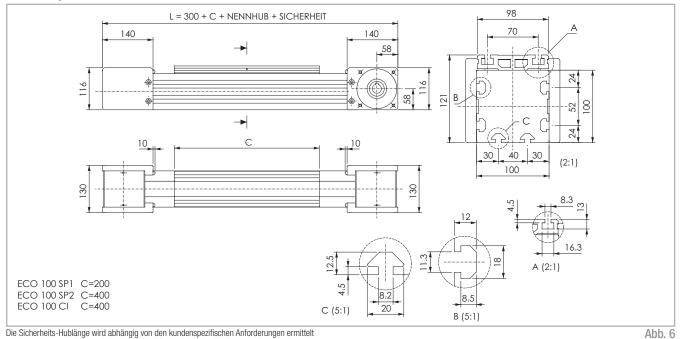
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ECO 80	50 AT 5	50	0,164

Tab. 10

Riemenlänge (mm) SP2/CI = $2 \times L - 240$ SP1 = $2 \times L - 90$

ECO 80 SP2 - ECO 80 SP1 - ECO 80 Cl - Tragzahlen


Тур	F _x [N]		F _y [N] F _z		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 80 SP2	2100	1440	48400	22541	48400	320	3412	3412
ECO 80 SP1	2100	1440	24200	11271	24200	160	175	175
ECO 80 CI	2100	1770	4229	8731	2849	83	129	297

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 11

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI

Abmessungen ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Тур				
	ECO 100 SP2	ECO 100 SP1	ECO100 Cl		
Maximale Hublänge [mm]	6000	6000	6000		
Max. Wiederholgenauigkeit [mm]*1	± 0,05	± 0,05	± 0,05		
Maximale Geschwindigkeit [m/s]	5,0	5,0	1,5		
Maximale Beschleunigung [m/s²]	50	50	1,5		
Zahnriemen-Typ	50 AT 10	50 AT 10	50 AT 10		
Typ Zahnriemenscheibe	Z 24	Z 24	Z 24		
Riemenscheibendurchmesser [mm]	76,39	76,39	76,39		
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	240	240	240		
Gewicht des Laufwagens [kg]	2,9	1,5	3,3		
Gewicht Hub Null [kg]	16,7	12,5	17,1		
Gewicht je 100 mm Hub [kg]	1,3	1,3	1,1		
Losbrechmoment [Nm]	1,90	1,35	1,35		
Riemenscheiben-Trägheitsmoment [g mm²]	2070000	2070000	2070000		
Schienengröße [mm]	20	20	Ø10		
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsa	ırt		Tab. 12		

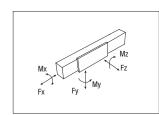
ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI -Tragzahlen

Тур	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ECO 100 SP2	4565	2832	76800	35399	76800	722	7603	7603
ECO 100 SP1	4565	2832	38400	17700	38400	361	334	334
ECO 100 CI	4565	3740	9154	20079	6167	214	310	962
01-1- D."(D. L. I	difference de la constante de	(0.11.01	orr				T 1 4 T

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ECO 100	0,342	0,439	0,781
			Tab. 13

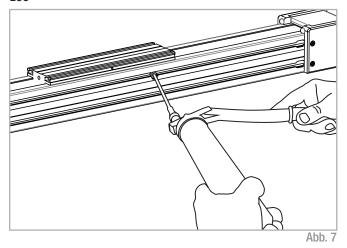

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ECO 100	50 AT 10	50	0,290

Tab. 14

Riemenlänge (mm) SP1 = $2 \times L - 112$ $SP2/CI = 2 \times L - 312$

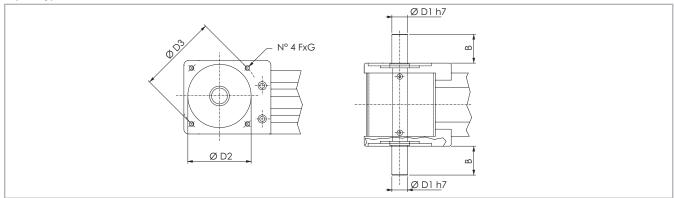

Zapfen

Lineareinheiten Typ ECO mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung ECO werden wartungsarme Kugelumlauf-Linearführungen eingesetzt.

In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischenden Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht. Um das System wartungsarm auszuführen, sind an den Stirnseiten der Linearführungswagen Schmiervorsätze angebracht, die eine bestimmte Menge an Schmierstoff gespeichert haben und diesen kontinuierlich an die Kugelumläufe abgeben. Dieses System garantiert lange Wartungsintervalle: alle 5000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Im Fall von hohen Belastungen und hoher Dynamik wenden Sie sich bitte an unsere Anwendungstechnik.

EC0


Nachschmiermenge (je Schmieranschluß):

Тур	Menge [cm³]
ECO 60	1
ECO 80	1,4
ECO 100	2,8

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Weitere ausführliche Informationen über Schmierung entnehmen Sie bitte den technischen Katalogen.

Zapfen

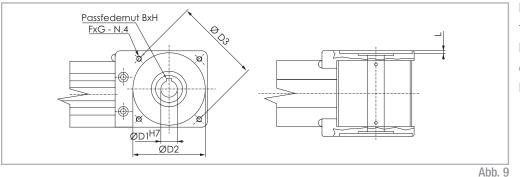
Zapfen Typ AS

Die einfache Welle kann auf der rechten oder linken Seite des Antriebskopfs positioniert werden.

Abb. 8

Abmessungen (mm)

Passend für Typ	Zapfentyp	D1	D2	D3	12	F	G	Antrieb- skopf AS links	Antrieb- skopf AS rechts
ECO 60	AS 12	12	60	75	25	M5	12	2G	21
ECO 80	AS 20	20	80	100	36,5	M6	16	2G	21
ECO 100	AS 25	25	110	130	50	M8	20	2G	21

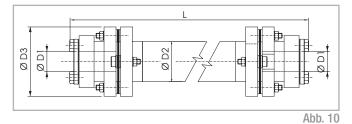

Tab. 17

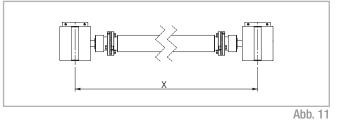
Hohlwellen

Übertragung des Antriebsmomentes auf die Zahnriemenscheibe

Bei der Variante mit Hohlwelle erfolgt die Kraftübertragung auf die Zahnriemenscheibe mit Hilfe einer Passfeder-Verbindung. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Hohlwelle


Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.


Тур	Zapfentyp	D1	D2	D3	L	Passfeder BxH	F	G	Antriebs- kopf
ECO 60	AC 12	12H7	60	75	3,5	4 x 4	M5	12	2A
ECO 80	AC 19	19H7	80	100	3,5	6 x 6	M6	16	2A
ECO 100	AC 25	25H7	110	130	4,5	8 x 7	M8	20	2A

Lineareinheiten im Paralleleinsatz

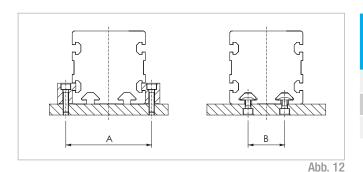
Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Lineareinheiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.

Passend für Typ	Zapfentyp	D1	D2	D3	Bestellcode	L
ECO 60	AP 12	12	25	45	GK12P1A	L= X-88 [mm]
ECO 80	AP 20	20	40	69,5	GK20P1A	L= X-116 [mm]
ECO 100	AP 25	25	70	99	GK25P1A	L= X-165 [mm]

Tab. 19

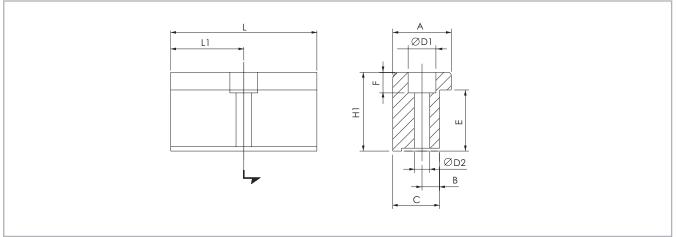
Zubehör


Befestigung mit Spannpratze oder Nutensteinen

Aufgrund der verwendeten Führungssysteme, die Belastungen aus allen Richtungen erlauben, können Lineareinheiten der ECO Serie in jeglicher Position montiert werden.

Bitte benutzen Sie die folgenden Befestigungsmethoden.

Trägheitsmoment [g mm²] C1 + C2 · (X-Y)


	C1	C2	Υ	Gewicht [Kg] C1+C2 · (X-Y)			
	[g mm²] [g mm²]		[mm]	C1 [Kg]	C2 [Kg mm]		
GK12P	61,456	69	166	0,308	0,00056		
GK20P	1.014,968	464	250	2,48	0,00148		
GK25P	5.525,250	4.708	356	6,24	0,0051		

Тур	A (mm)	B (mm)
ECO 60	72	30
ECO 80	94	40
ECO 100	120	40

Tab. 21

Spannpratze

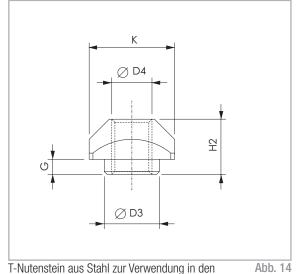

Ein Block aus eloxiertem Aluminium dient zur Befestigung von Lineareinheiten über die seitlichen Nuten am Profil.

Abb. 13

Тур	А	H1	В	С	E	F	D1	D2	L	Lt	Bestellcode
ECO 60	20	17,5	6	16	11,5	6	9,4	5,3	50	25	1001490
ECO 80	20	20,7	7	16	14,7	7	11	6,4	50	25	1001491
ECO 100	36,5	28,5	10	31	18,5	11,5	16,5	10,5	100	50	1001233

Tab. 22

T-Nutensteine

T-Nutenstein aus Stahl zur Verwendung in den Nuten am Profil.

Abmessungen (mm)

Typ Nut

Тур	Nut	D3	D4	G	H2	K	Bestellcode
ECO 60	S	6,7	M5	2,3	6,5	10	1000627
ECO 60	C	-	M5	-	5	10	1000620
ECO 80	S	8	M6	3,3	8,3	13	1000043
ECO 80	С	-	M6	-	5,8	13	1000910
ECO 80	L	-	M6	-	6,5	17	1000911
ECO 100	S	11	M8	3	11	17	1000932
ECO 100	C	-	M8	-	8	16	1000942
ECO 100	L	-	M8	-	6,5	17	1000943

 $\boldsymbol{L} = \text{Seitlich} - \boldsymbol{C} = \text{Laufwagen} - \boldsymbol{I} = \text{Unten}$

Tab. 23

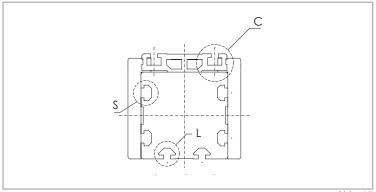


Abb. 15

Näherungsschalter

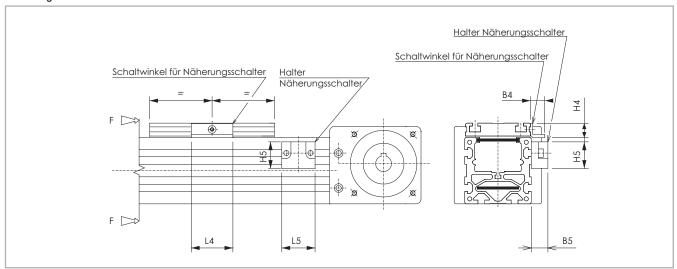
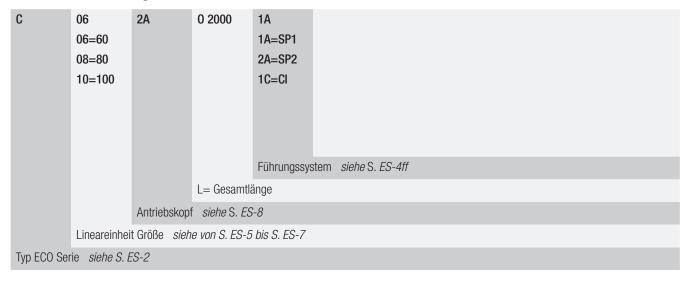


Abb. 16

Halter Näherungsschalter

Ein Block aus rot-eloxiertem Aluminium, komplett mit Nutensteinen, dient zur Montage von induktiven Näherungsschaltern.

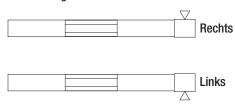
Schaltwinkel für Näherungsschalter


Ein verzinkter Schaltwinkel, der am Laufwagen befestigt wird, dient zum Aktivieren des Näherungsschalters.

Тур	В4	B5	L4	L5	H4	H5	Für Näherungs- schalter	Schaltwinkel Bestellcode	Sensorhalter Bestellcode
ECO 60	9,5	14	25	29	12	22,5	Ø 8	G000268	G000213
ECO 80	17,2	20	50	40	17	32	Ø 12	G000267	G000209
ECO 100	17,2	20	50	40	17	32	Ø 12	G000267	G000210

Tab. 24

Bestellschlüssel / ~

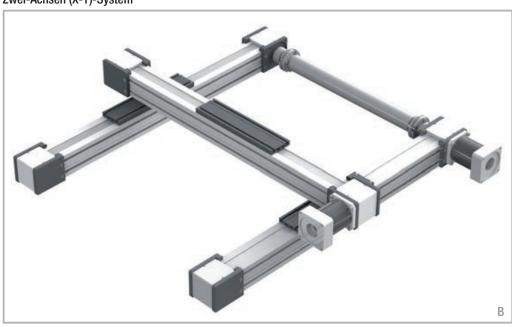

Bestellbezeichnung für Lineareinheiten ECO Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

Mehrachsensysteme //

Häufig müssen beim Einsatz von Lineareinheiten in Mehrachsensystemen die für die Kombination notwendigen Verbindungselemente selbst konstruiert und hergestellt werden. Deshalb hat Rollon ein Kombinationssystem zur einfachen und schnellen Zusammensetzung der verschiedenen Lineareinheiten konzipiert, um so die Umsetzung vom Projekt zur fertigen


Maschine zu beschleunigen. Rollon bietet dem Kunden eine Auswahl an Montagezubehör wie Adapterplatten, Spannpratzen und Winkel, die zum Teil direkt in die Lineareinheit integriert sind, wodurch auch Montagezeiten auf ein Minimum reduziert werden.

Ein-Achsen (X)-System

A - Lineareinheiten: - Achse X: 1 ECO 80 SP2

Zwei-Achsen (X-Y)-System

B - Lineareinheiten: - Achse X: 2 ECO 80 SP2 - Achse Y: 1 ECO 80 SP2

Uniline System

UNILINE A Serie /

Beschreibung UNILINE A Serie

Abb. 1

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe A ist die Festlagerschiene (T-Schiene) liegend in das Aluprofil montiert. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich.

Die wichtigsten Merkmale:

- Kompakte Bauweise
- Geschützte innenliegende Führungen
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

Leistungsmerkmale:

- Verfügbare Baugrößen:Typ A: 40, 55, 75
- Längen- und Hubtoleranz:

 Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

 Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE A Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

selbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wech-

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen Laufv

In den Lineareinheiten der UNILINE A Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit RPP-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE A Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze (Baureihe 40 verfügt über Befestigungsbohrungen). Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

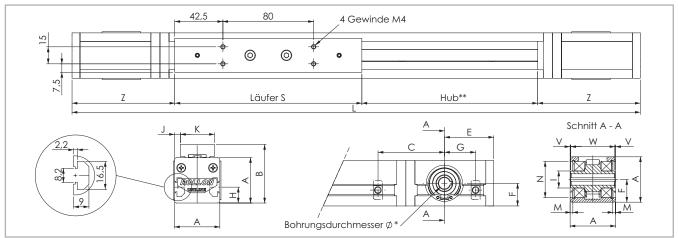
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Wider- stand	Schmelz- temperatur
kg	kN	10-6	W	J	0 10-9	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2,7	69	23	200	880-900	33	600-655


Tab. 2

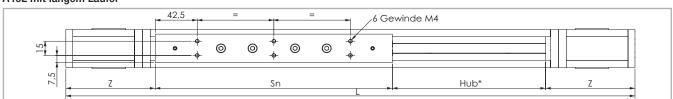
Mechanische Eigenschaften

Rm	Rp (02)	A	НВ
N —— mm²	N — mm²	%	_
205	165	10	60-80

> A40

A40 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

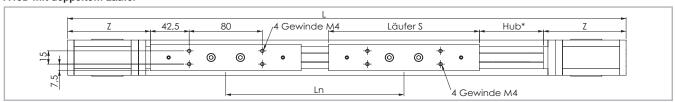

Abb. 2

Тур	A [mm]	B [mm]	C* [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]
A40	40	51,5	57	43,5	20	26	14	Ø 14,9	5	30	2,3	Ø 32	165	0,5	39	91,5	1900

^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-11ff

Tab. 4

A40L mit langem Läufer



^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
A40L	240	400	$Sn = S_{min} + n \cdot 10$	91,5	1660

 $^{^\}star$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge S $_{\rm max}$ Für längere Hübe s. Tab. 9

A40D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

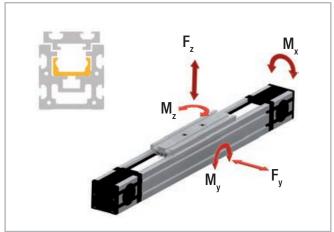
Abb. 4

Тур	S	L _{min}	L **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A40D	165	235	1900	$Ln = L_{min} + n \cdot 5$	91,5	1660

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L_{\min} der Läuferplatten

 $^{^{\}star\star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. Tab. 9

Abb. 3


Tab. 5

^{**} Maximaler Mittenabstand $L_{\rm max}$ der Läuferplatten mit Hub = 0 mm Für längere Hübe s. Tab. 9

Tab. 6

Tragzahlen, Momente und Kenndaten

A40

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
A40	10RPP5	10	0,041

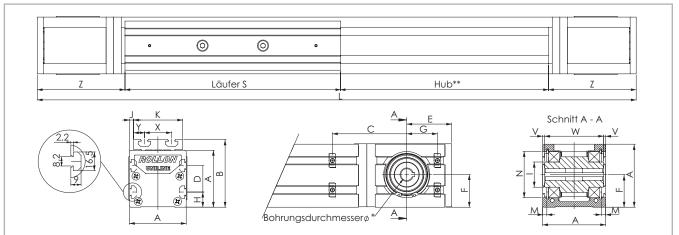
Tab. 7

Riemenlänge (mm) = $2 \times L - 168$ Standard Läufer **Riemenlänge (mm)** = $2 \times L - S_n - 3$ Langer Läufer

Riemenlänge (mm)) = $2 \times L - L_n - 168$ Doppelter Läufer

Abb. 5

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A40	1530	820	300	2,8	5,6	13,1
A40-L	3060	1640	600	5,6	22 bis 70	61 bis 192
A40-D	3060	1640	600	5,6	70 bis 570	193 bis 1558


Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

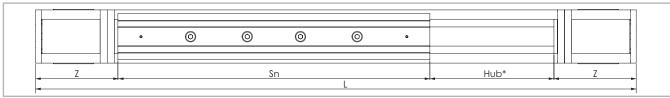
Tab. 8

Kenndaten	Тур
	A40
Standard-Riemenspannung [N]	160
Leermoment [Nm]	0,14
Max. Verfahrgeschwindigkeit [m/s]	3
Max. Beschleunigung [m/s²]	10
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV18
Läufertyp	CS18 spez.
Trägheitsmoment ly [cm⁴]	12
Trägheitsmoment lz [cm ⁴]	13,6
Teilkreis der Zahnriemenscheibe [m]	0,02706
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	5055
Hub je Umdrehung der Welle [mm]	85
Läufermasse [g]	220
Gewicht mit Nullhub [g]	1459
Gewicht mit 1 m Hub [g]	3465
Max. Hub [mm]	3500
Betriebstemperatur	-20 °C bis + 80 °C

> A55

A55 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 6

Тур	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]	
A55	55	71	67,5	25	50,5	27,5	32,5	15	Ø 24,9	1,5	52	2,35	Ø 47	200	28	12	0,5	54	108	3070	

^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-11ff

Tab. 10

A55L mit langem Läufer

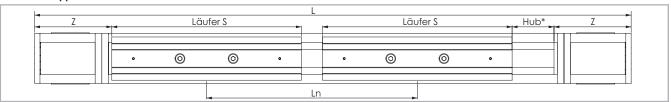

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 7

Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
A055-L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770

Tab. 11

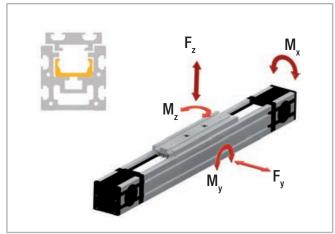
A55D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 8

Тур	S	L _{min}	L _{max} **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A55D	200	300	3070	$Ln = L_{min} + n \cdot 5$	108	2770

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand $\rm L_{min}$ der Läuferplatten


Tab. 12

^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. Tab. 15

^{**} Maximaler Mittenabstand L_{\max} der Läuferplatten mit Hub = 0 mm Für längere Hübe s. Tab. 15

Tragzahlen, Momente und Kenndaten

A55

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

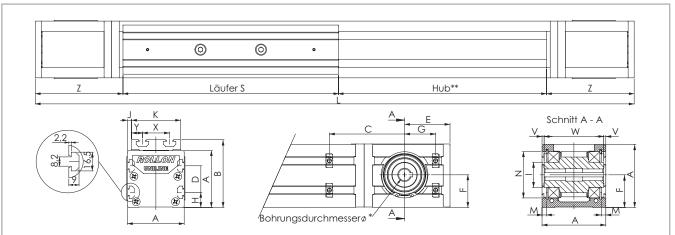
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
A55	18RPP5	18	0,074

Tab. 13

Riemenlänge (mm) = $2 \times L - 182$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 18$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 182$ Doppelter Läufer

Abb. 9

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A55	4260	2175	750	11,5	21,7	54,4
A55-L	8520	4350	1500	23	82 bis 225	239 bis 652
A55-D	8520	4350	1500	23	225 bis 2302	652 bis 6677


Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

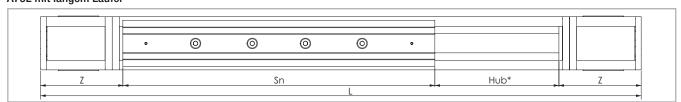
Tab. 14

Kenndaten	Тур
	A55
Standard-Riemenspannung [N]	220
Leermoment [Nm]	0,22
Max. Verfahrgeschwindigkeit [m/s]	5
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV28
Läufertyp	CS28 spez.
Trägheitsmoment ly [cm⁴]	34,6
Trägheitsmoment Iz [cm ⁴]	41,7
Teilkreis der Zahnriemenscheibe [m]	0,04138
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	45633
Hub je Umdrehung der Welle [mm]	130
Läufermasse [g]	475
Gewicht mit Nullhub [g]	2897
Gewicht mit 1 m Hub [g]	4505
Max. Hub [mm]	5500
Betriebstemperatur	-20 °C bis + 80 °C

A75

A75 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 10

Тур	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]
A75	75	90	71,5	35	53,5	38,8	34,5	20	Ø 29,5	5	65	4,85	Ø 55	285	36	14,5	2,3	70,4	116	3420

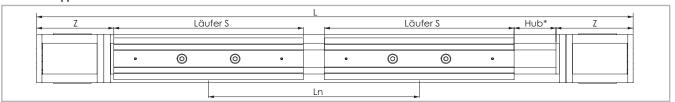
^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-11ff

Tab. 16

A75L mit langem Läufer

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 11


Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
A75-L	440	700	$Sn = S_{min} + n \cdot 10$	116	3000

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge $S_{_{\!{
m max}}}$ Für längere Hübe s. Tab. 21

Tab. 17

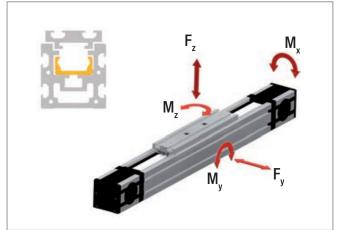
Tab. 18

A75D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 12

Тур	S	L _{min}	L**	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
A75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000


^{*} Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L_{min} der Läuferplatten ** Maximaler Mittenabstand L_{max} der Läuferplatten mit Hub = 0 mm

Für längere Hübe s. Tab. 21

^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. Tab. 21

Tragzahlen, Momente und Kenndaten

A75

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
A75	30RPP8	30	0,185

Tab. 19

Riemenlänge (mm) = $2 \times L - 213$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 72$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 213$ Doppelter Läufer

Abb. 13

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
A75	12280	5500	1855	43,6	81,5	209
A75-L	24560	11000	3710	87,2	287 bis 770	852 bis 2282
A75-D	24560	11000	3710	87,2	771 bis 6336	2288 bis 18788

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 20

Kenndaten	Тур
	A75
Standard-Riemenspannung [N]	800
Leermoment [Nm]	1,15
Max. Verfahrgeschwindigkeit [m/s]	7
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV43
Läufertyp	CS43 spez.
Trägheitsmoment ly [cm⁴]	127
Trägheitsmoment Iz [cm4]	172
Teilkreis der Zahnriemenscheibe [m]	0,05093
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	139969
Hub je Umdrehung der Welle [mm]	160
Läufermasse [g]	1242
Gewicht mit Nullhub [g]	6729
Gewicht mit 1 m Hub [g]	9751
Max. Hub [mm]	7500
Betriebstemperatur	-20 °C bis + 80 °C

Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

Schmierung der Laufbahnen

Die ordnungsgemäße Schmierung bei normalen Bedingungen:

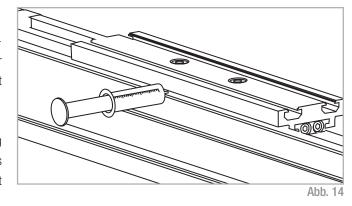
- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

Schmiermittel	Verdickungsmittel	Temperaturbereich [°C]	Dynamische Viskosität [mPas]
Wälzlagerfett	Lithiumseife	-30 bis +170	<4500

Tab. 22

Nachschmierung der Führungsschienen

Diese Typen haben seitlich in der Läuferplatte einen Schmierkanal, durch den das Schmiermittel direkt auf die Laufbahnen aufgetragen werden kann. Die Schmierung kann auf zwei Arten erfolgen:


1. Nachschmierung mit der Fettpresse:

Hier wird die Spitze der Fettpresse in den Kanal an der Läuferplatte eingeführt und das Fett hineingepresst (s. Abb. 14). Bitte beachten Sie, dass vor der eigentlichen Schmierung der Schienenlaufbahnen der Kanal befüllt wird und daher eine ausreichende Menge Fett zu verwenden ist.

2. Automatisches Schmiersystem:

Vom Ausgang des Schmiersystems zur Lineareinheit wird als Verbindung ein Adapter* benötigt, welcher in die Bohrung des Läuferplattenkanals hineingeschraubt wird. Der Vorteil dieser Lösung liegt in der Möglichkeit $\ der \ Nachschmierung \ der \ Schienenlaufbahnen \ ohne \ Maschinenstopp.$

*(Evtl. notwendiger Adapter muss kundenseitig angefertigt werden.)

Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp erfolgen.

- Lösen Sie die Sicherungsschrauben C (oben auf der Läuferplatte) von der Riemenspannvorrichtung A (s. Abb. 15).
- 2. Lösen Sie auch komplett die Riemenspannschrauben B und nehmen Sie die Riemenspannvorrichtungen A aus ihren Gehäusen.
- 3. Heben Sie den Zahnriemen soweit an, dass die Laufschienen zu sehen sind.
 - Wichtig: Achten Sie darauf, dass die Sie die Seitenabdichtung nicht beschädigen.
- 4. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die Läuferplatte einmal über die ganze Länge bewegen.

- 5. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 6. Fügen Sie die Riemenspannvorrichtungen A wieder in ihre Gehäuse ein und montieren Sie die Riemenspannschrauben B. Stellen Sie die Riemenspannung neu ein (s. S. US-59).
- 7. Befestigen Sie die Sicherungsschrauben C.

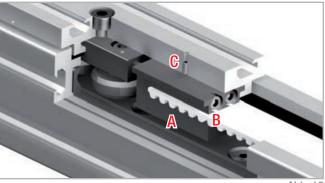


Abb. 15

Zubehör

Adapterplatten

Standard Motor-Adapterplatten AC2

Montageplatten für die gängigsten Motoren oder Getriebe. Die Anschlussbohrungen für die Motoren oder Getriebe sind kundenseitig vorzunehmen. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

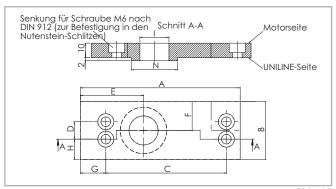


Abb. 16

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
40	110	40	83	12	43,5	20	17,5	14	Ø 20	Ø 32
55	126	55	100	25	50,5	27,5	18	15	Ø 30	Ø 47
75	135	70	106	35	53,5	35	19	17,5	Ø 35	Ø 55

Tab. 23

NEMA-Platten AC1-P

Montageplatten für die gängigsten Motoren oder Getriebe nach NEMA. Diese Platten werden montagefertig zur Befestigung an die Linearachsen geliefert. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	NEMA Motoren / Getriebe
40	NEMA 23
55	NEMA 34
75	NEMA 42

Tab. 24

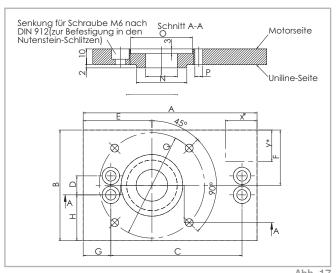
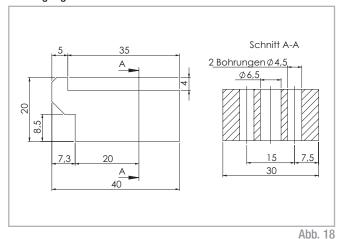


Abb. 17

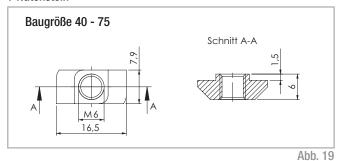

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]		H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
40	110	70	83	12	43,5	35	17,5	29	20	Ø 32	Ø 39	Ø 5	Ø 66,7
55	126	100	100	25	50,5	50	18	37,5	30	Ø 47	Ø 74	Ø 5,5	Ø 98,4
75	135	120	106	35	53,5	60	19	42,5	35	Ø 55	Ø 57	Ø 7,1	Ø 125,7

Tab. 25

Paarweiser synchroner Einsatz von Linearachsen

Sollen zwei Achsen parallel zueinander mit Synchronwelle eingesetzt werden, geben Sie dies bitte bei der Bestellung an, damit die Passfedernuten in den Motoranschlussbohrungen zueinander ausgerichtet werden.

Befestigungsklemme APF-2

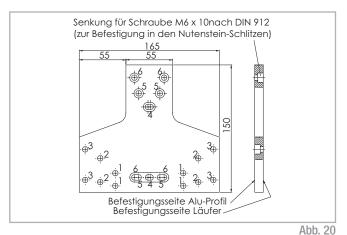


Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück* erforderlich.

*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein

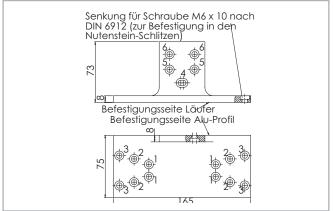


Das maximale Anzugsdrehmoment beträgt 10 Nm.

Montagekits

T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-60). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.


Hinweis Bei Verw

Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Winkel-Verbindungsplatte APC-2

Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

-			-	
Λ	h	h	7)	1

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 27

Kreuz-Verbindungsplatte APC-3

Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).

Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer 1	Befestigungsbohrungen für den Läufer 2
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 28

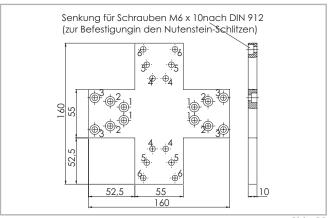
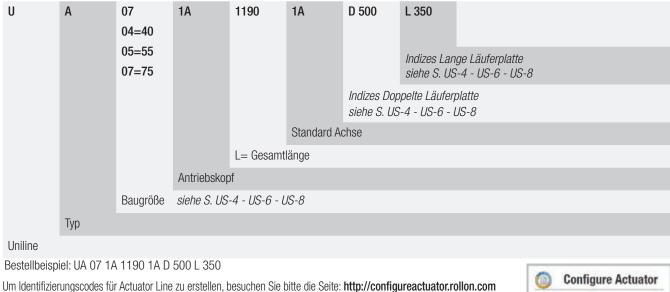



Abb. 22

Bestellschlüssel

Bestellbezeichnung für Lineareinheiten UNILINE A Serie

Zubehör

Standardmotor-Adapterplatte

Bestellbeispiel: A07-AC2

NEMA-Motor-Adapterplatten

Bestellbeispiel: A07-AC1-P

T-Verbindungsplatte Bestellbezeichnung: APC-1, s. S. US-12 Winkel-Verbindungsplatte Bestellbezeichnung: APC-2, s. S. US-13 Kreuz-Verbindungsplatte Bestellbezeichnung: APC-3, s. S. US-13 Befestigungsklemme Bestellbezeichnung: APF-2, s. S. US-12

Motoranschlussbohrungen

		Baugröße									
Bohrung [Ø]	40	55	75	Bestellcode Antriebskopf							
	10G8 / 3js9	12G8 / 4js9	14G8 / 5js9	1A							
Metrisch [mm]		10G8 / 3js9	16G8 / 5js9	2A							
mit Nut für Passfeder		14G8 / 5js9	19G8 / 6js9	3A							
		16G8 / 5js9		4A							
Metrisch [mm]			18	1B							
für Kompressions- kupplung			24	2B							
	3/8 / 1/8	1/2 / 1/8	5/8 / 3/16	1P							
Zöllig [in] mit Nut für Passfeder		3/8 / 1/8		2P							
		5/8 / 3/16		3P							

Die hervorgehobenen Anschlussbohrungen sind Standardanschlüsse

Metrisch: Passfedersitz für Passfedern nach DIN 6885 Form A Zöllig: Passfedersitz für Passfedern nach BS 46 Part 1 : 1958

UNILINE C Serie

Beschreibung UNILINE C Serie

Abb. 23

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe C sind die Festlagerschiene (T-Schiene) und die Loslagerschiene (U-Schiene) stehend in das Aluprofil montiert. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich.

Die wichtigsten Merkmale:

- Kompakte Bauweise
- Geschützte innenliegende Führungen
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

Leistungsmerkmale:

- Verfügbare Baugrößen:
 - Typ C: 55, 75
- Längen- und Hubtoleranz:

Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE C Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Laui

Antriebsriemen

In den Lineareinheiten der UNILINE C Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit RPP-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE C Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze

Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

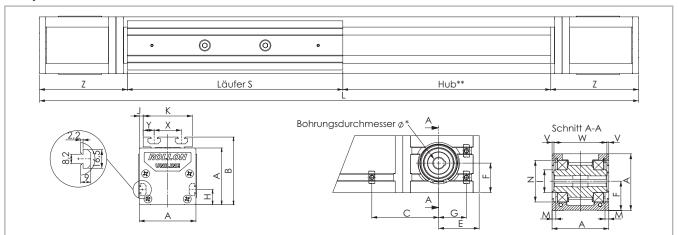
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 30

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz- temperatur	
kg	kN	10 ⁻⁶	W	J			
					Ω . m . 10 ⁻⁹	°C	
dm ³	mm²	K	m . K	kg . K			
2,7	69	23	200	880-900	33	600-655	


Tab. 31

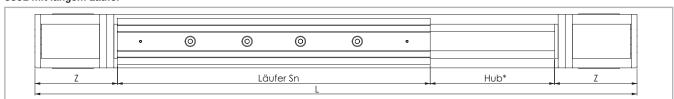
Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

C55

C55 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 24

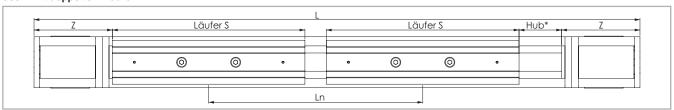
Тур	A [mm]	B [mm]	C* [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]
C55	55	71	67,5	50,5	27,5	32,5	15	Ø 24,9	1,5	52	2,35	Ø 47	200	28	12	0,5	54	108	1850

^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-23ff

Tab. 33

C55L mit langem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 25

Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
C55L	310	500	$Sn = S_{min} + n \cdot 10$	108	1550

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge S $_{\rm max}$ Für längere Hübe s. tab. 38

Tab. 34

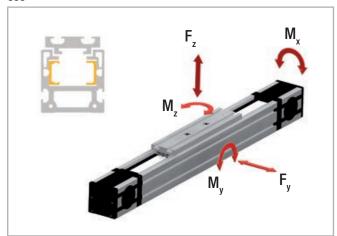
C55D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 26

Тур	S	L _{min}	L _{max} **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
C55D	200	300	1850	$Ln = L + n \cdot 5$	108	1570

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L $_{\min}$ der Läuferplatten


 $^{^{\}star\star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 38

^{**} Maximaler Mittenabstand Lmax der Läuferplatten mit Hub = 0 mm Für längere Hübe s. tab. 38

Tab. 35

Tragzahlen, Momente und Kenndaten

C55

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

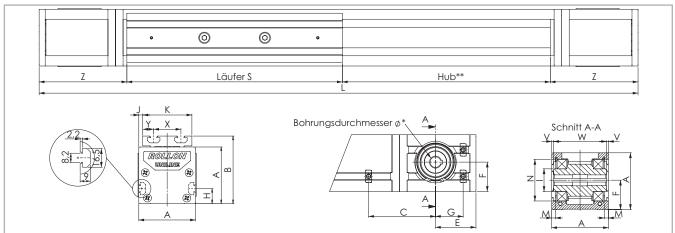
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
C55	18RPP5	18	0,074

Tab. 36

Riemenlänge (mm) = $2 \times L - 182$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 18$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 182$ Doppelter Läufer

Abb. 27

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
C55	560	300	1640	18,5	65,6	11,7
C55-L	1120	600	3280	37	213 bis 525	39 bis 96
C55-D	1120	600	3280	37	492 bis 3034	90 bis 555


Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

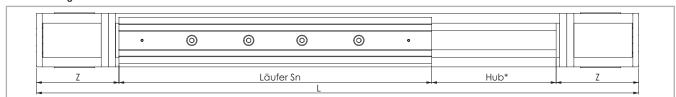
Tab. 37

Kenndaten	Тур
	C55
Standard-Riemenspannung [N]	220
Leermoment [Nm]	0,3
Max. Verfahrgeschwindigkeit [m/s]	3
Max. Beschleunigung [m/s²]	10
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV18 / ULV18
Läufertyp	2 CS18 spez.
Trägheitsmoment ly [cm ⁴]	34,4
Trägheitsmoment Iz [cm ⁴]	45,5
Teilkreis der Zahnriemenscheibe [m]	0,04138
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	45633
Hub je Umdrehung der Welle [mm]	130
Läufermasse [g]	549
Gewicht mit Nullhub [g]	2971
Gewicht mit 1 m Hub [g]	4605
Max. Hub [mm]	5500
Betriebstemperatur	-20 °C bis + 80 °C

C75

C75 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 28

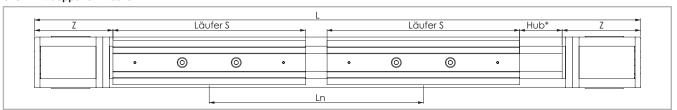
Тур	A	B	C*	E	F	G*	H	l	J	K	M	N	S	X	Y	V	W	Z	Hub**
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]							
C75	75	90	71,5	53,5	38,8	34,5	20	Ø 29,5	5	65	4,85	Ø 55	285	36	14,5	2,3	70,4	116	3000

^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-23ff

Tab. 39

C75L mit langem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 29

Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
C75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2610

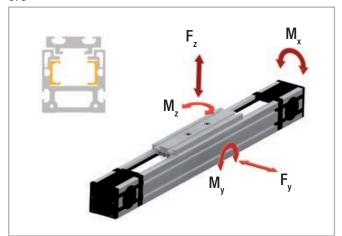
 $^{^*}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge $S_{\scriptscriptstyle{max}}$ Für längere Hübe s. tab. 44

Tab. 40

C75D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 30


Тур	S	L _{min}	L _{max} **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
C75D	285	416	3024	$Ln = L_{min} + n \cdot 8$	116	2610

^{*} Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L_{\min} der Läuferplatten ** Maximaler Mittenabstand L_{\max} der Läuferplatten mit Hub = 0 mm Für längere Hübe s. tab. 44

^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 44

Tragzahlen, Momente und Kenndaten

C75

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
C75	30RPP8	30	0,185

Tab. 42

Riemenlänge (mm) = $2 \times L - 213$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 72$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 213$ Doppelter Läufer

Abb. 31

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
C75	1470	750	4350	85,2	217	36,1
C75-L	2940	1500	8700	170,4	674 bis 1805	116 bis 311
C75-D	2940	1500	8700	170,4	1809 bis 13154	312 bis 2268

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 43

Kenndaten	Тур
	C75
Standard-Riemenspannung [N]	800
Leermoment [Nm]	1,3
Max. Verfahrgeschwindigkeit [m/s]	5
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV28 / ULV28
Läufertyp	2 CS28 spez.
Trägheitsmoment ly [cm ⁴]	108
Trägheitsmoment Iz [cm ⁴]	155
Teilkreis der Zahnriemenscheibe [m]	0,05093
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	139969
Hub je Umdrehung der Welle [mm]	160
Läufermasse [g]	1666
Gewicht mit Nullhub [g]	6853
Gewicht mit 1 m Hub [g]	9151
Max. Hub [mm]	7500
Betriebstemperatur	-20 °C bis + 80 °C

Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

Schmierung der Laufbahnen

Die ordnungsgemäße Schmierung bei normalen Bedingungen:

- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

Schmiermittel	Verdickungsmittel	Temperaturbereich [°C]	Dynamische Viskosität [mPas]
Wälzlagerfett	Lithiumseife	-30 bis +170	<4500

Tab. 45

Nachschmierung der Führungsschienen

- 1. Schieben Sie die Läuferplatte an eine Seite
- Drücken Sie den Zahnriemen in Höhe des halben Verfahrweges etwas ein, damit Sie die innenliegenden Schienen sehen können (s. Abb. 32).
 Evtl. ist die Riemenspannung zu lösen oder zu lockern. Siehe hierzu Kapitel Riemenspannung (s. S. US-59).
- 3. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 4. Stellen Sie falls notwendig die empfohlene Riemenspannung wieder her (s. S US-59).
- Schieben Sie anschließend die Läuferplatte über den ganzen Verfahrwegvor und zurück, um das Schmierfett über die komplette Schienenlänge zu verteilen.

Abb. 32

Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp, erfolgen.

- 1. Lösen Sie die Sicherungsschrauben C (oben auf der Läuferplatte) von der Riemenspannvorrichtung A (s. Abb. 33).
- 2. Lösen Sie auch komplett die Riemenspannschrauben B und nehmen Sie die Riemenspannvorrichtungen A aus ihren Gehäusen.
- 3. Heben Sie den Zahnriemen soweit an, dass die Laufschienen zu sehen sind
 - Wichtig: Achten Sie darauf, dass die Sie die Seitenabdichtung nicht beschädigen.
- 4. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die

Läuferplatte einmal über die ganze Länge bewegen.

- 5. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 6. Fügen Sie die Riemenspannvorrichtungen A wieder in ihre Gehäuse ein und montieren Sie die Riemenspannschrauben B. Stellen Sie die Riemenspannung neu ein (s. S. US-59).
- 7. Befestigen Sie die Sicherungsschrauben C.

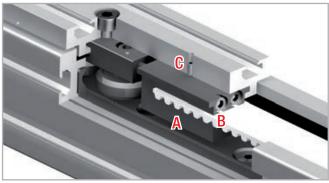


Abb. 33

Zubehör

Adapterplatten

Standard Motor-Adapterplatten AC2

Montageplatten für die gängigsten Motoren oder Getriebe. Die Anschlussbohrungen für die Motoren oder Getriebe sind kundenseitig vorzunehmen. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

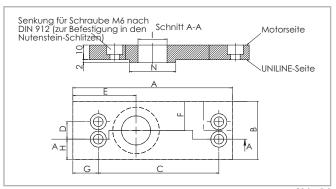
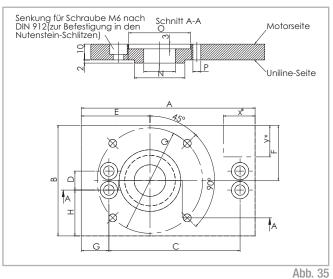


Abb. 34

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50,5	27,5	18	15	Ø 30	Ø 47
75	135	70	106	35	53,5	35	19	17,5	Ø 35	Ø 55

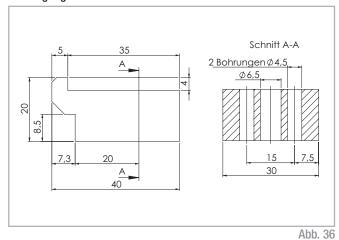

Tab. 46

NEMA-Platten AC1-P

Montageplatten für die gängigsten Motoren oder Getriebe nach NEMA. Diese Platten werden montagefertig zur Befestigung an die Linearachsen geliefert. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	NEMA Motoren / Getriebe
55	NEMA 34
75	NEMA 42

Tab. 47

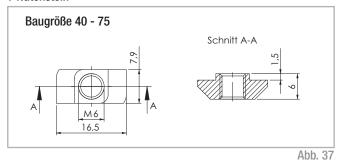

Größe	A [mm]	B [mm]	C [mm]	D [mm]		F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50,5	50	18	37,5	30	Ø 47	Ø 74	Ø 5,5	Ø 98,4
75	135	120	106	35	53,5	60	19	42,5	35	Ø 55	Ø 57	Ø 7,1	Ø 125,7

Tab. 48

Paarweiser synchroner Einsatz von Linearachsen

Sollen zwei Achsen parallel zueinander mit Synchronwelle eingesetzt werden, geben Sie dies bitte bei der Bestellung an, damit die Passfedernuten in den Motoranschlussbohrungen zueinander ausgerichtet werden.

Befestigungsklemme APF-2



Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück* erforderlich.

*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein

Das maximale Anzugsdrehmoment beträgt 10 Nm.

Montagekits

T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-60). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

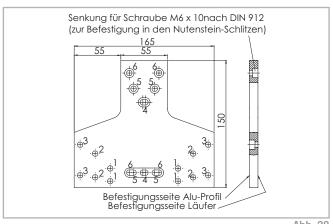
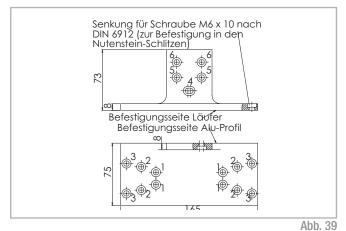


Abb. 38

Hinweis


Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

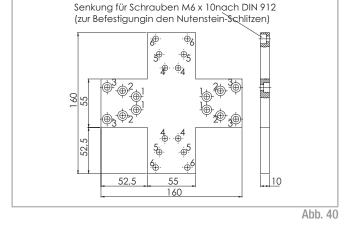
Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 49

Winkel-Verbindungsplatte APC-2

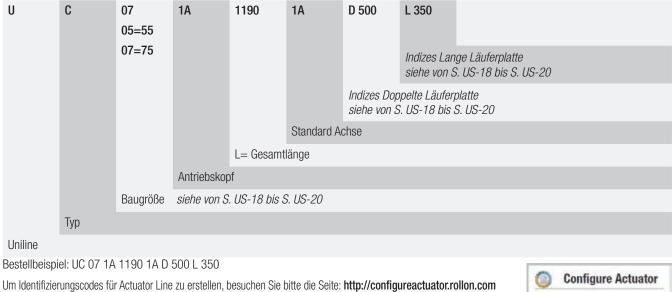
Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6
		Tob EO


Tab. 50

Kreuz-Verbindungsplatte APC-3

Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).


Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer 1	Befestigungsbohrungen für den Läufer 2
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Bestellschlüssel /

Bestellbezeichnung für Lineareinheiten UNILINE C Serie

Ausrichtung Links/Rechts

	∇	Rechts
		Links

Zubehör

Standardmotor-Adapterplatte

C	07	AC2
	05=55 07=75	Standard Motor-Adapterplatten siehe S. US-23
	Baugröße	siehe S. US-23
Тур		

Bestellbeispiel: C07-AC2

NEMA-Motor-Adapterplatten

C	07	AC1
	05=55 07=75	NEMA-Adapterplatten siehe S. US-23
	Baugröße	siehe S. US-23
Тур		

Bestellbeispiel: C07-AC1-P

T-Verbindungsplatte Bestellbezeichnung: APC-1, s. S. US-24
 Winkel-Verbindungsplatte Bestellbezeichnung: APC-2, s. S. US-25
 Kreuz-Verbindungsplatte Bestellbezeichnung: APC-3, s. S. US-26
 Befestigungsklemme Bestellbezeichnung: APF-2, s. S. US-24

Motoranschlussbohrungen

	Bauç			
Bohrung [Ø]	55	Bestellcode Antriebskopf		
	12G8 / 4js9	14G8 / 5js9	1A	
Metrisch [mm]	10G8 / 3js9	16G8 / 5js9	2A	
mit Nut für Passfeder	14G8 / 5js9	19G8 / 6js9	ЗА	
	16G8 / 5js9		4A	
Metrisch [mm] für Kompressions-		18	1B	
kupplung		24	2B	
	1/2 / 1/8	5/8 / 3/16	1P	
Zöllig [in] mit Nut für Passfeder	3/8 / 1/8		2P	
	5/8 / 3/16		3P	

Die hervorgehobenen Anschlussbohrungen sind Standardanschlüsse

Metrisch: Passfedersitz für Passfedern nach DIN 6885 Form A Zöllig: Passfedersitz für Passfedern nach BS 46 Part 1 : 1958

UNILINE E Serie /

Beschreibung UNILINE E Serie

Abb. 41

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe E ist die Festlagerschiene (T-Schiene) liegend in das Aluprofil montiert und die Loslagerschiene (U-Schiene) als Momentenabstützung außen an das Profil angeflanscht. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich.

Die wichtigsten Merkmale:

- Kompakte Bauweise
- Geschützte innenliegende Führungen
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

Leistungsmerkmale:

- Verfügbare Baugrößen:
 - Typ E: 55, 75
- Längen- und Hubtoleranz:

Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE E Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebsriemen

In den Lineareinheiten der UNILINE E Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit RPP-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE E Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze.

Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

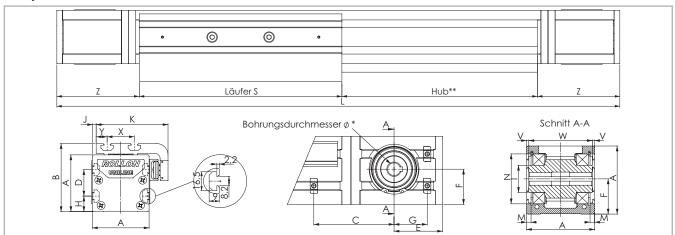
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 53

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur	
kg	kN	10 ⁻⁶	W	J			
					Ω . m . 10 $^{ ext{-9}}$	°C	
dm ³	mm²	K	m . K	kg . K			
2,7	69	23	200	880-900	33	600-655	


Tab. 54

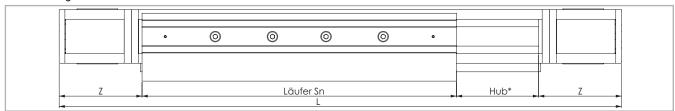
Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

E55

E55 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 42

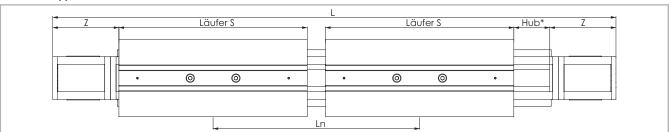
Тур	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]
E55	55	71	67,5	25	50,5	27,5	32,5	15	Ø 24,9	1,5	71	2,35	Ø 47	200	28	12	0,5	54	108	3070

^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-35ff

Tab. 56

E55L mit langem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 43

Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
E55L	310	500	$Sn = S_{min} + n \cdot 10$	108	2770

 $^{^*}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge S_{\max} Für längere Hübe s. tab. 61

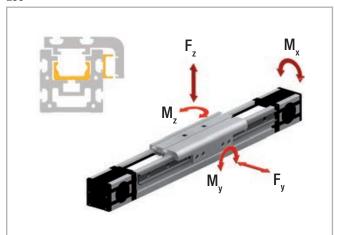
Tab. 57

E55D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 44

Тур	S	L _{min}	L **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
E55D	200	300	3070	$Ln = L + n \cdot 5$	108	2770


^{*} Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L_{\min} der Läuferplatten ** Maximaler Mittenabstand L_{\max} der Läuferplatten mit Hub = 0 mm

 $^{^{\}star\star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 61

Für längere Hübe s. tab. 61

Tragzahlen, Momente und Kenndaten

E55

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

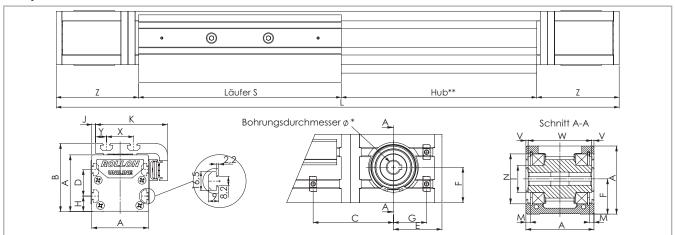
Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E55	18RPP5	18	0,074

Tab. 59

Riemenlänge (mm) = $2 \times L - 182$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 18$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 182$ Doppelter Läufer

Abb. 45

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
E55	4260	2175	1500	25,5	43,4	54,4
E55-L	8520	4350	3000	51	165 bis 450	239 bis 652
E55-D	8520	4350	3000	51	450 bis 4605	652 bis 6677


Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

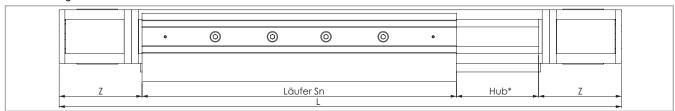
Tab. 60

Kenndaten	Тур
	E55
Standard-Riemenspannung [N]	220
Leermoment [Nm]	0,3
Max. Verfahrgeschwindigkeit [m/s]	3
Max. Beschleunigung [m/s²]	10
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV28 / ULV18
Läufertyp	CS28 spez. / CPA 18
Trägheitsmoment ly [cm⁴]	34,6
Trägheitsmoment Iz [cm ⁴]	41,7
Teilkreis der Zahnriemenscheibe [m]	0,04138
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	45633
Hub je Umdrehung der Welle [mm]	130
Läufermasse [g]	635
Gewicht mit Nullhub [g]	3167
Gewicht mit 1 m Hub [g]	5055
Max. Hub [mm]	5500
Betriebstemperatur	-20 °C bis + 80 °C

E75

E75 System

Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 46

Тур	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	J [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]	
E75	75	90	71,5	35	53,5	38,8	34,5	20	Ø 29,5	5	95	4,85	Ø 55	285	36	14,5	2,3	70,4	116	3420	

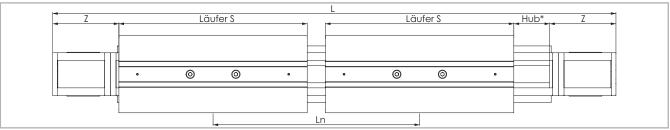
^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-35ff

Tab. 62

E75L mit langem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 47


Тур	S _{min}	S _{max}	Sn	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]
E75L	440	700	$Sn = S_{min} + n \cdot 10$	116	3000

 $^{^*}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferplattenlänge S_{max} Für längere Hübe s. tab. 67

Tab. 63

Tab. 64

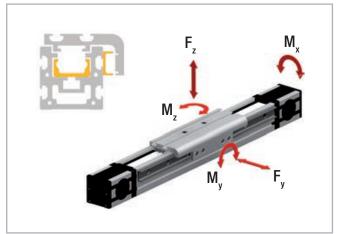
E75D mit doppeltem Läufer

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 48

Тур	S	L _{min}	L **	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
E75D	285	416	3416	$Ln = L_{min} + n \cdot 8$	116	3000

 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand $L_{_{\min}}$ der Läuferplatten


^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 67

^{**} Maximaler Mittenabstand L_{max} der Läuferplatten mit Hub = 0 mm

Für längere Hübe s. tab. 67

Tragzahlen, Momente und Kenndaten

E75

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
E75	30RPP8	30	0,185

Tab. 65

Riemenlänge (mm) = $2 \times L - 213$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 72$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 213$ Doppelter Läufer

Abb. 49

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
E75	12280	5500	3710	85,5	163	209
E75-L	24560	11000	7420	171	575 bis 1540	852 bis 2282
E75-D	24560	11000	7420	171	1543 bis 12673	2288 bis 18788

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 66

Kenndaten	Тур
	E75
Standard-Riemenspannung [N]	800
Leermoment [Nm]	1,3
Max. Verfahrgeschwindigkeit [m/s]	5
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	TLV43 / ULV28
Läufertyp	CS43 spez. / CPA 28
Trägheitsmoment ly [cm⁴]	127
Trägheitsmoment lz [cm ⁴]	172
Teilkreis der Zahnriemenscheibe [m]	0,05093
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	139969
Hub je Umdrehung der Welle [mm]	160
Läufermasse [g]	1772
Gewicht mit Nullhub [g]	7544
Gewicht mit 1 m Hub [g]	10751
Max. Hub [mm]	7500
Betriebstemperatur	-20 °C bis + 80 °C

Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

Schmierung der Laufbahnen

Die ordnungsgemäße Schmierung bei normalen Bedingungen:

- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

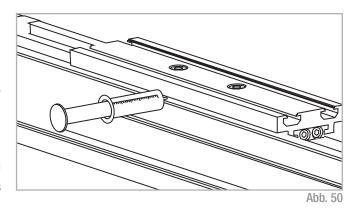
Schmiermittel	Verdickungsmittel	Temperaturbereich [°C]	Dynamische Viskosität [mPas]
Wälzlagerfett	Lithiumseife	-30 bis +170	<4500
			T I 00

Tab. 68

Nachschmierung der Führungsschienen

Diese Typen haben seitlich in der Läuferplatte einen Schmierkanal, durch den das Schmiermittel direkt auf die Laufbahnen aufgetragen werden kann. Die Schmierung kann auf zwei Arten erfolgen:

1. Nachschmierung mit der Fettpresse:


Hier wird die Spitze der Fettpresse in den Kanal an der Läuferplatte eingeführt und das Fett hineingepresst (s. Abb. 50). Bitte beachten Sie, dass vor der eigentlichen Schmierung der Schienenlaufbahnen der Kanal befüllt wird und daher eine ausreichende Menge Fett zu verwenden ist.

2. Automatisches Schmiersystem:

Vom Ausgang des Schmiersystems zur Lineareinheit wird als Verbindung ein Adapter* benötigt, welcher in die Bohrung des Läuferplattenkanals

hineingeschraubt wird. Der Vorteil dieser Lösung liegt in der Möglichkeit der Nachschmierung der Schienenlaufbahnen ohne Maschinenstopp.

*(Evtl. notwendiger Adapter muss kundenseitig angefertigt werden.)

Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp, erfolgen.

- Lösen Sie die Sicherungsschrauben C (oben auf der Läuferplatte) von der Riemenspannvorrichtung A (s. Abb. 51).
- 2. Lösen Sie auch komplett die Riemenspannschrauben B und nehmen Sie die Riemenspannvorrichtungen A aus ihren Gehäusen.
- 3. Heben Sie den Zahnriemen soweit an, dass die Laufschienen zu sehen sind.
 - Wichtig: Achten Sie darauf, dass die Sie die Seitenabdichtung nicht beschädigen.
- 4. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die Läuferplatte einmal über die ganze Länge bewegen.

- 5. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 6. Fügen Sie die Riemenspannvorrichtungen A wieder in ihre Gehäuse ein und montieren Sie die Riemenspannschrauben B. Stellen Sie die Riemenspannung neu ein (s. S. US-59).
- 7. Befestigen Sie die Sicherungsschrauben C.

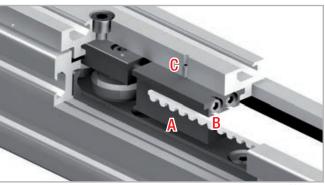


Abb. 51

Zubehör

Adapterplatten

Standard Motor-Adapterplatten AC2

Montageplatten für die gängigsten Motoren oder Getriebe. Die Anschlussbohrungen für die Motoren oder Getriebe sind kundenseitig vorzunehmen. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

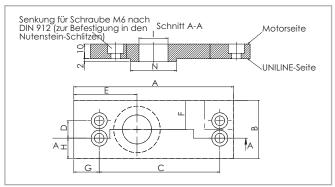
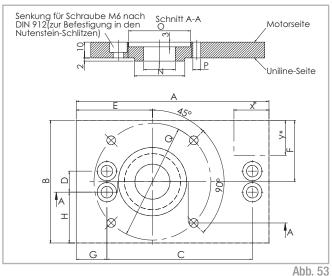


Abb. 52

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]
55	126	55	100	25	50,5	27,5	18	15	Ø 30	Ø 47
75	135	70	106	35	53,5	35	19	17,5	Ø 35	Ø 55

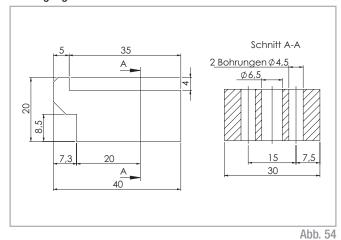

Tab. 69

NEMA-Platten AC1-P

Montageplatten für die gängigsten Motoren oder Getriebe nach NEMA. Diese Platten werden montagefertig zur Befestigung an die Linearachsen geliefert. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	NEMA Motoren / Getriebe
55	NEMA 34
75	NEMA 42

Tab. 70

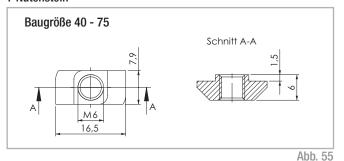

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
55	126	100	100	25	50,5	50	18	37,5	30	Ø 47	Ø 74	Ø 5,5	Ø 98,4
75	135	120	106	35	53,5	60	19	42,5	35	Ø 55	Ø 57	Ø 7,1	Ø 125,7

Tab. 71

Paarweiser synchroner Einsatz von Linearachsen

Sollen zwei Achsen parallel zueinander mit Synchronwelle eingesetzt werden, geben Sie dies bitte bei der Bestellung an, damit die Passfedernuten in den Motoranschlussbohrungen zueinander ausgerichtet werden.

Befestigungsklemme APF-2

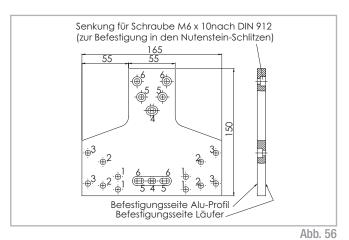


Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück* erforderlich.

*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein



Das maximale Anzugsdrehmoment beträgt 10 Nm.

Montagekits

T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-60). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Hinweis

Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil				
55	Bohrungen 2	Bohrungen 5				
75	Bohrungen 3	Bohrungen 6				

Tab. 72

Winkel-Verbindungsplatte APC-2

Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

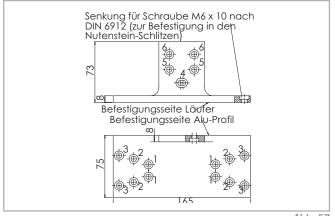


Abb. 57

Hinweis

Diese Adapterplatte kann bei den Typen E und ED nur eingeschränkt eingesetzt werden. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 73

Kreuz-Verbindungsplatte APC-3

Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).

Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer 1	Befestigungsbohrungen für den Läufer 2				
55	Bohrungen 2	Bohrungen 5				
75	Bohrungen 3	Bohrungen 6				

Tab. 74

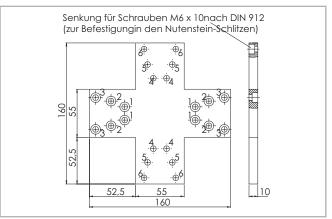
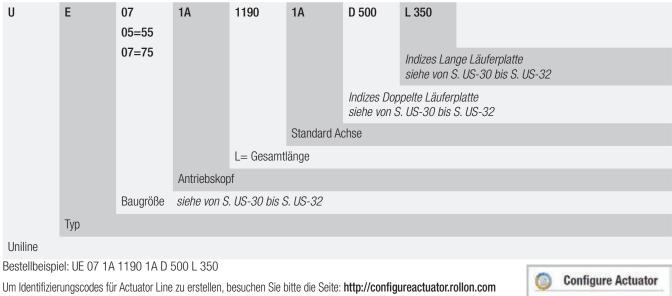




Abb. 58

Bestellschlüssel /

Bestellbezeichnung für Lineareinheiten UNILINE E Serie

Ausrichtung Links/Rechts

		Rechts
		Links

Zubehör

Standardmotor-Adapterplatte

Е	07	AC2
	05=55 07=75	Standard Motor-Adapterplatten siehe S. US-35
	Baugröße	siehe S. US-35
Тур		

Bestellbeispiel: E07-AC2

NEMA-Motor-Adapterplatten

E	07	AC1
	05=55 07=75	NEMA-Adapterplatten siehe S. US-35
	Baugröße	siehe S. US-35
Туре		

Bestellbeispiel: E07-AC1

T-Verbindungsplatte Bestellbezeichnung: APC-1, s. S. US-36
 Winkel-Verbindungsplatte Bestellbezeichnung: APC-2, s. S. US-37
 Kreuz-Verbindungsplatte Bestellbezeichnung: APC-3, s. S. US-37
 Befestigungsklemme Bestellbezeichnung: APF-2, s. S. US-36

Motoranschlussbohrungen

	Bauç	yröße	
Bohrung [Ø]	55	75	Bestellcode Antriebskopf
	12G8 / 4js9	14G8 / 5js9	1A
Metrisch [mm]	10G8 / 3js9	16G8 / 5js9	2A
mit Nut für Passfeder	14G8 / 5js9	19G8 / 6js9	3A
	16G8 / 5js9		4A
Metrisch [mm]		18	1B
für Kompressions- kupplung		24	2B
	1/2 / 1/8	5/8 / 3/16	1P
Zöllig [in] mit Nut für Passfeder	3/8 / 1/8		2P
	5/8 / 3/16		3P

Die hervorgehobenen Anschlussbohrungen sind Standardanschlüsse

Metrisch: Passfedersitz für Passfedern nach DIN 6885 Form A Zöllig: Passfedersitz für Passfedern nach BS 46 Part 1 : 1958

UNILINE ED Serie /

Beschreibung UNILINE ED Serie

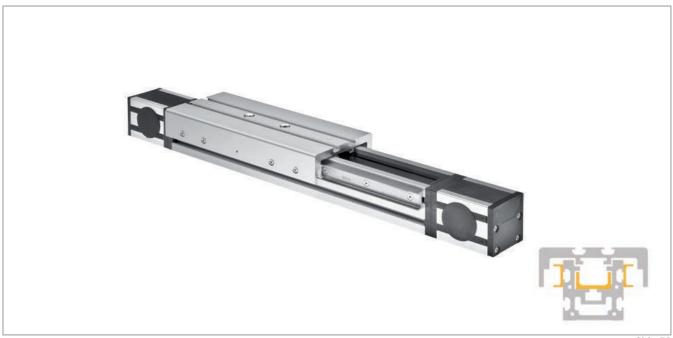


Abb. 59

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe ED ist eine Loslagerschiene (U-Schiene) liegend in das Aluprofil montiert und zur erhöhten Momentenabstützung zwei weitere Loslagerschienen (U-Schienen) außen angeflanscht. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich.

Die wichtigsten Merkmale:

- Kompakte Bauweise
- Geschützte innenliegende Führungen
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

Leistungsmerkmale:

- Verfügbare Baugrößen:Typ ED: 75
- Längen- und Hubtoleranz:

 Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

 Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE ED Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebsriemen

In den Lineareinheiten der UNILINE ED Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit RPP-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen.

Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE ED Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze.

Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

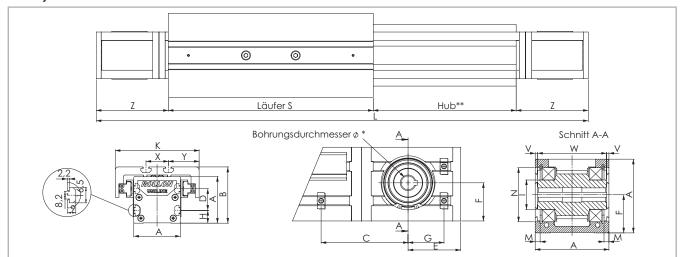
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 76

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg	kN	10-6	W	J 	Ω . m . 10^{-9}	°C
dm^3	mm ²	K	m . K	kg . K	22 1111 1 10	o o
2,7	69	23	200	880-900	33	600-655


Tab. 77

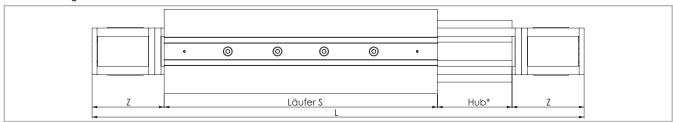
Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	$\frac{N}{mm^2}$	%	_
205	165	10	60-80

ED75

ED75 System

^{*} Informationen zu den Motoranschlussbohrungen siehe Bestellschlüssel. ** Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.


Abb. 60

	Тур	A [mm]	B [mm]	C* [mm]	D [mm]	E [mm]	F [mm]	G* [mm]	H [mm]	l [mm]	K [mm]	M [mm]	N [mm]	S [mm]	X [mm]	Y [mm]	V [mm]	W [mm]	Z [mm]	Hub** [mm]
ı	ED75	75	90	71,5	35	53,5	38,8	34,5	20	Ø 29,5	135	4,85	Ø 55	330	36	49,5	2,3	70,4	116	2900

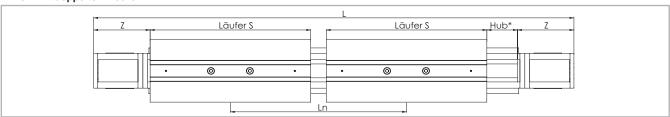
^{*} Position der Nutensteine bei Verwendung unserer Motoradapterplatten s. S. US-45ff

Tab. 79

ED75L mit langem Läufer

 * Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 61


Тур	S _{min} *	S _{max}	Sn	Z	Hub**
	[mm]	[mm]	[mm]	[mm]	[mm]
ED75L	440	700	$Sn = S_{min} + n \cdot 10$	116	2500

 $^{^{\}star}\,$ Die Länge von 440 mm ist als Standard, alle anderen Längen sind als Sonderabmessungen zu betrachten

Tab. 80

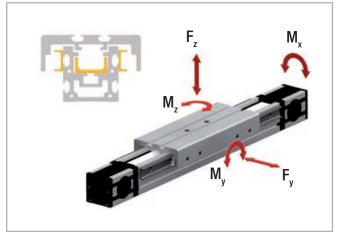
Tab. 81

ED75D mit doppeltem Läufer

* Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 62

Тур	S	L _{min}	L**	Ln	Z	Hub*
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ED75D	330	416	2864	$Ln = L_{min} + n \cdot 8$	116	2450


 $^{^{\}star}$ Maximaler Hub mit einer Führungsschiene aus einem Stück und Mindestabstand L $_{\min}$ der Läuferplatten

^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 84

^{**} Maximaler Hub mit einer Führungsschiene aus einem Stück und maximaler Läuferpla_{ne}nlänge Smax Für längere Hübe s. tab. 84

^{**} Maximaler Mittenabstand $\rm L_{max}$ der Läuferplatten mit Hub = 0 mm Für längere Hübe s. tab. 84

Typ ED

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ED75	30RPP8	30	0,185

Tab. 82

Riemenlänge (mm) = $2 \times L - 258$ Standard Läufer Riemenlänge (mm) = $2 \times L - S_n + 72$ Langer Läufer Riemenlänge (mm) = $2 \times L - L_n - 258$ Doppelter Läufer

Abb. 63

Тур	C [N]	F _y [N]	F _z [N]			M _z [Nm]
ED75	9815	5500	8700	400,2	868	209
ED75-L	19630	11000	8700	400,2	1174 bis 2305	852 bis 2282
ED75-D	19630	11000	17400	800,4	3619 bis 24917	2288 bis 15752

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 83

Kenndaten	Тур		
	ED75		
Standard-Riemenspannung [N]	1000		
Leermoment [Nm]	1,5		
Max. Verfahrgeschwindigkeit [m/s]	5		
Max. Beschleunigung [m/s²]	15		
Wiederholgenauigkeit [mm]	0,1		
Lineare Genauigkeit [mm]	0,8		
Compact Rail Tragschiene	ULV43 / ULV28		
Läufertyp	CS43 spez. / CS28 spez.		
Trägheitsmoment ly [cm⁴]	127		
Trägheitsmoment Iz [cm4]	172		
Teilkreis der Zahnriemenscheibe [m]	0,05093		
Trägheitsmoment jeder Zahnriemenscheibe [gmm²]	139969		
Hub je Umdrehung der Welle [mm]	160		
Läufermasse [g]	3770		
Gewicht mit Nullhub [g]	9850		
Gewicht mit 1 m Hub [g]	14400		
Max. Hub [mm]	7500		
Betriebstemperatur	-20 °C bis + 80 °C		

Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

Schmierung der Laufbahnen

Die ordnungsgemäße Schmierung bei normalen Bedingungen:

- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

Schmiermittel	Verdickungsmittel	Temperaturbereich [°C]	Dynamische Viskosität [mPas]
Wälzlagerfett	Lithiumseife	-30 bis +170	<4500

Tab. 85

Nachschmierung der Führungsschienen

- 1. Schieben Sie die Läuferplatte an eine Seite
- Drücken Sie den Zahnriemen in Höhe des halben Verfahrweges etwas ein, damit Sie die innenliegenden Schienen sehen können (s. Abb. 64).
 Evtl. ist die Riemenspannung zu lösen oder zu lockern. Siehe hierzu Kapitel Riemenspannung (s. S. US-59).
- 3. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- 4. Stellen Sie falls notwendig die empfohlene Riemenspannung wieder her (s. S. US-59).
- Schieben Sie anschließend die Läuferplatte über den ganzen Verfahrwegvor und zurück, um das Schmierfett über die komplette Schienenlänge zu verteilen.

Abb. 64

Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp, erfolgen.

- 1. Lösen Sie die Sicherungsschrauben C (oben auf der Läuferplatte) von der Riemenspannvorrichtung A (s. Abb. 65).
- 2. Lösen Sie auch komplett die Riemenspannschrauben B und nehmen Sie die Riemenspannvorrichtungen A aus ihren Gehäusen.
- 3. Heben Sie den Zahnriemen soweit an, dass die Laufschienen zu sehen sind
 - Wichtig: Achten Sie darauf, dass die Sie die Seitenabdichtung nicht beschädigen.
- 4. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die Läuferplatte einmal über die ganze Länge bewegen.

- 5. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.
- Fügen Sie die Riemenspannvorrichtungen A wieder in ihre Gehäuse ein und montieren Sie die Riemenspannschrauben B. Stellen Sie die Riemenspannung neu ein (s. S. US-59).
- 7. Befestigen Sie die Sicherungsschrauben C.

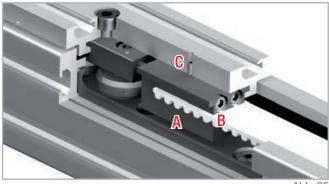


Abb. 6

Zubehör

Adapterplatten

Standard Motor-Adapterplatten AC2

Montageplatten für die gängigsten Motoren oder Getriebe. Die Anschlussbohrungen für die Motoren oder Getriebe sind kundenseitig vorzunehmen. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

^{*} Die Adapterplatte muss bei Verwendung einer ED75-Lineareinheit im Bereich X-Y ausgespart werden. Andernfalls kommt es zu einem Kontakt mit der äußeren Schiene. X = 20 mm; Y = 35 mm

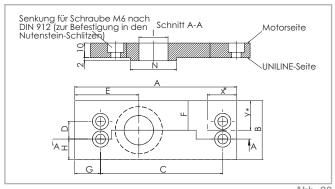
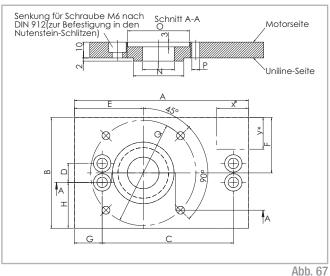


Abb. 66

Größe	A	B	C	D	E	F	G	H	l	N
	[mm]									
75	135	70	106	35	53,5	35	19	17,5	Ø 35	Ø 55

Tab. 86

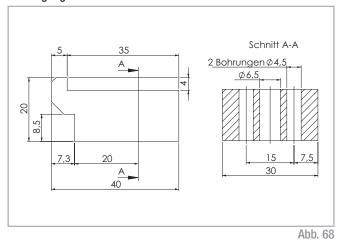

NEMA-Platten AC1-P

Montageplatten für die gängigsten Motoren oder Getriebe nach NEMA. Diese Platten werden montagefertig zur Befestigung an die Linearachsen geliefert. Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	NEMA Motoren / Getriebe
75	NEMA 42

Tab. 87

^{*} Die Adapterplatte muss bei Verwendung einer ED 75 Lineareinheit im Bereich X-Y ausgespart werden. Andernfalls kommt es zu einem Kontakt mit der äußeren Schiene. X = 20 mm; Y = 60 mm

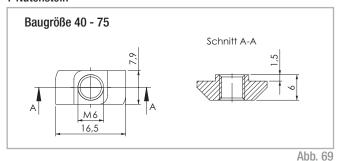

Größe	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]	N [mm]	0 [mm]	P [mm]	Q [mm]
75	135	120	106	35	53,5	60	19	42,5	35	Ø 55	Ø 57	Ø 7,1	Ø 125,7

Tab. 88

Paarweiser synchroner Einsatz von Linearachsen

Sollen zwei Achsen parallel zueinander mit Synchronwelle eingesetzt werden, geben Sie dies bitte bei der Bestellung an, damit die Passfedernuten in den Motoranschlussbohrungen zueinander ausgerichtet werden.

Befestigungsklemme APF-2

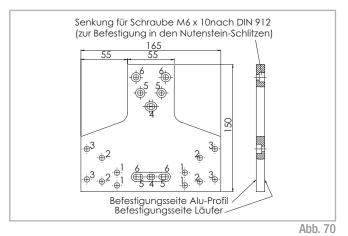


Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück* erforderlich.

*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein



Das maximale Anzugsdrehmoment beträgt 10 Nm.

Montagekits

T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-60). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Hinweis

Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
75	Bohrungen 3	Bohrungen 6

Tab. 89

Winkel-Verbindungsplatte APC-2

Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

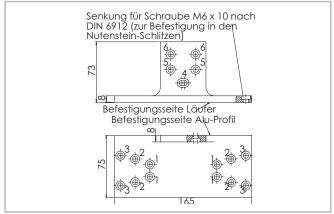


Abb. 71

Hinweis

Diese Adapterplatte kann bei den Typen E und ED nur eingeschränkt eingesetzt werden. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
75	Bohrungen 3	Bohrungen 6

Tab. 90

Kreuz-Verbindungsplatte APC-3

Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).

Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer 1	Befestigungsbohrungen für den Läufer 2
75	Bohrungen 3	Bohrungen 6

Tab. 91

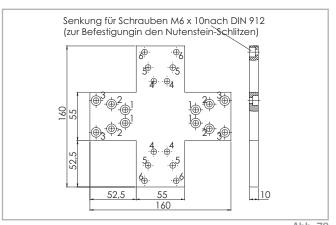
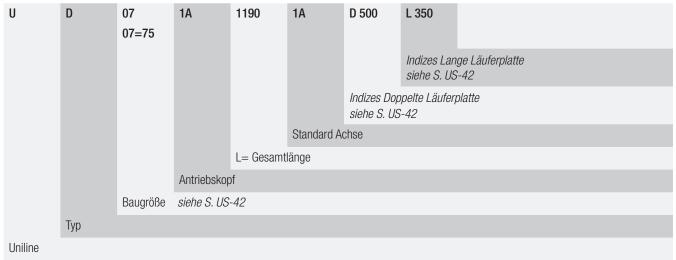



Abb. 72

Bestellschlüssel / ~

Bestellbezeichnung für Lineareinheiten UNILINE ED Serie

Bestellbeispiel: UD 07 1A 1190 1A D 500 L 350

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

-	∇	 	
Rechts			
	,		
Links			
1	\Box		

Zubehör

Standardmotor-Adapterplatte

D	07	AC2
	07=75	Standard Motor-Adapterplatten siehe S. US-45
	Baugröße	siehe S. US-45
Тур		

Bestellbeispiel: D07-AC2

NEMA-Motor-Adapterplatten

D	07	AC1
	07=75	NEMA-Adapterplatten siehe S. US-45
	Baugröße	siehe S. US-45
Тур		

Bestellbeispiel: D07-AC1-P

T-Verbindungsplatte Bestellbezeichnung: APC-1, s. S. US-46
Winkel-Verbindungsplatte Bestellbezeichnung: APC-2, s. S. US-47
Kreuz-Verbindungsplatte Bestellbezeichnung: APC-3, s. S. US-47
Befestigungsklemme Bestellbezeichnung: APF-2, s. S. US-46

Motoranschlussbohrungen

	Baugröße		
Bohrung [Ø]	75	Bestellcode Antriebskopf	
	14G8 / 5js9	1A	
Metrisch [mm]	16G8 / 5js9	2A	
mit Nut für Passfeder	19G8 / 6js9	ЗА	
		4A	
Metrisch [mm]	18	1B	
für Kompressions- kupplung	24	2B	
	5/8 / 3/16	1P	
Zöllig [in] mit Nut für Passfeder		2P	
		3P	

Tab. 92

Die hervorgehobenen Anschlussbohrungen sind Standardanschlüsse Metrisch: Passfedersitz für Passfedern nach DIN 6885 Form A Zöllig: Passfedersitz für Passfedern nach BS 46 Part 1 : 1958

UNILINE H Serie

Beschreibung UNILINE H Serie

Abb. 73

Uniline ist die Produktfamilie einbaufertiger Linearachsen. Diese bestehen aus innenliegenden Compact Rail-Laufrollenführungen und stahlverstärkten Polyurethan-Zahnriemen im biegesteifen Aluminiumprofil. Längsdichtungen schließen das System ab. Mit dieser Anordnung ist die Achse bestmöglich vor Schmutz und Beschädigung geschützt. Bei der Baureihe H ist die Loslagerschiene (U-Schiene) liegend in das Aluprofil montiert. Die Baureihe H dient als Loslager-Achse zur Lastaufnahme von radialen Kräften und in Kombination mit den anderen Baureihen als Stützlager für auftretende Momente. Versionen mit langem (L) oder doppeltem (D) Läufer in einer Achse sind möglich. H Serie ist eine Stützachse und hat keinen Zahnriemen.

Die wichtigsten Merkmale:

- Kompakte Bauweise
- Hohe Verfahrgeschwindigkeiten
- Fettfreier Betrieb möglich (abhängig vom Anwendungsfall. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.)
- Hohe Vielseitigkeit
- Lange Verfahrwege
- Versionen mit langem oder mehreren Läufern in einer Linearachse verfügbar

Bevorzugte Einsatzgebiete:

- Handling und Automation
- Mehrachsportale
- Verpackungsmaschinen
- Schneidmaschinen
- Verschiebbare Paneele
- Lackieranlagen
- Schweißroboter
- Sondermaschinen

Leistungsmerkmale:

- Verfügbare Baugrößen: Typ H: 40, 55, 75
- Längen- und Hubtoleranz:

 Bei Hüben <1 m: +0 mm bis +10 mm (+0 in bis 0,4 in)

 Bei Hüben >1 m: +0 mm bis +15 mm (+0 in bis 0,59 in)

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der UNILINE H Serie eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen-Flächenträgheitsmomenten realisiert werden konnten. Das verwendete Material besteht aus eloxiertem Aluminium aus einer Legierung 6060. Die Abmessungen sind entsprechend EN 755-9 toleriert. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Laufwagen

Der Laufwagen der Lineareinheiten der UNILINE H Serie besteht aus eloxiertem Aluminium. Jede Läuferplatte verfügt zur Montage der Komponenten über T-Nutenschlitze

Um der Vielzahl von Anwendungen Rechnung zu tragen bietet Rollon eine große Anzahl an verschiedenen Laufwagentypen an.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

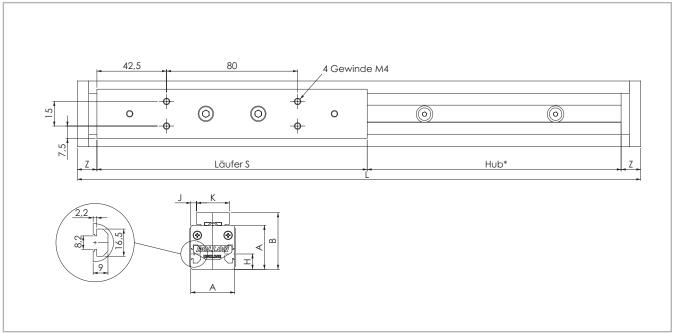
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 93

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg	kN	10-6	W	J	0 10-9	90
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2,7	69	23	200	880-900	33	600-655


Tab. 94

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

H40

H40 System

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 74

Тур*	A	B _{nom}	B _{min}	B _{max}	D	H	J	K	S	X	Y	Z	Hub**
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
H40	40	51,5	51,2	52,6	-	14	5	30	165	-	-	12	1900

Tab. 96

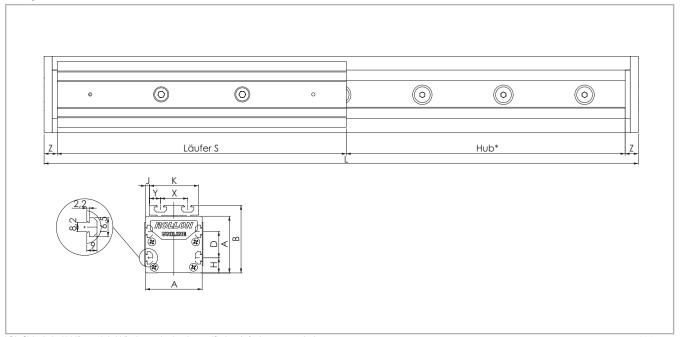
H40



Abb. 75

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H40	1530	820				13,1
H40-L	3060	1640	0	0	0	61 to 192
H40-D	3060	1640				192 to 1558

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff


Tab. 97

Kenndaten	Тур
	H40
Max. Verfahrgeschwindigkeit [m/s]	3
Max. Beschleunigung [m/s²]	10
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	ULV18
Läufertyp	CS18 spez.
Trägheitsmoment ly [cm4]	12
Trägheitsmoment lz [cm4]	13,6
Läufermasse [g]	220
Gewicht mit Nullhub [g]	860
Gewicht mit 1 m Hub [g]	3383
Max. Hub [mm]	3500
Betriebstemperatur	-20 °C bis + 80 °C

^{*} Auch mit langem oder doppeltem Läufer. Siehe hierzu S. US-4ff, Typ A...L und A...D ** Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 98

▶ H55

H55 system

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 76

Тур*	A [mm]	B _{nom} [mm]	B _{min} [mm]	B _{max} [mm]	D [mm]	H [mm]	J [mm]	K [mm]	S [mm]	X [mm]	Y [mm]	Z [mm]	Hub** [mm]	
H55	55	71	70,4	72,3	25	15	1,5	52	200	28	12	13	3070	

Tab. 99

H55

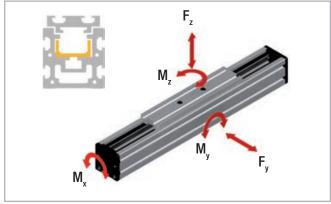
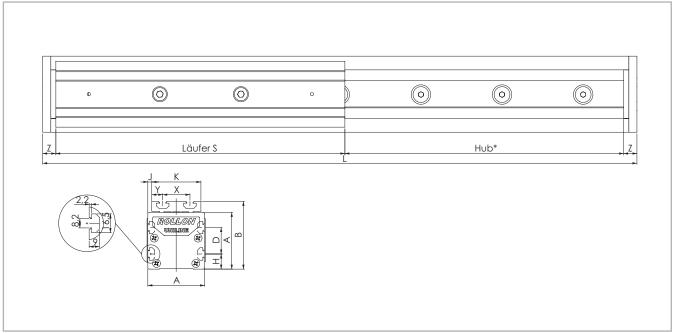


Abb. 77

Туре	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
H55	4260	2175				54,5
H55-L	8520	4350	0	0	0	239 bis 652
H55-D	8520	4350				652 bis 6677

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff


Tab. 100

Kenndaten	Туре
	H55
Max. Verfahrgeschwindigkeit [m/s]	5
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	ULV28
Läufertyp	CS28 spez.
Trägheitsmoment ly [cm4]	34,6
Trägheitsmoment Iz [cm4]	41,7
Läufermasse [g]	475
Gewicht mit Nullhub [g]	1460
Gewicht mit 1 m Hub [g]	4357
Max. Hub [mm]	5500
Betriebstemperatur	-20 °C bis + 80 °C
	Tab 101

^{*} Auch mit langem oder doppeltem Läufer. Siehe hierzu S. US-4ff, Typ A...L und A...D ** Maximaler Hub mit einer Führungsschiene aus einem Stück. Für längere Hübe s. tab. 101

► H75

H75 System

^{*} Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt.

Abb. 78

Тур*	A [mm]	B _{nom} [mm]	B _{min} [mm]	B _{max} [mm]	D [mm]	H [mm]	J [mm]	K [mm]	S [mm]	X [mm]	Y [mm]	Z [mm]	Hub** [mm]
H75	75	90	88,6	92,5	35	20	5	65	285	36	14,5	13	3420

* Auch mit langem oder doppeltem Läufer. Siehe hierzu S. US-4ff, Typ A...L und A...D ** Maximaler Hub mit einer Führungsschiene aus einem Stück. Stück. Für längere Hübe s. tab. 104

H75

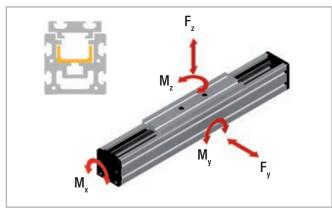


Abb. 79

Тур	C [N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
H75	12280	5500				209	
H75-L	24560	11000	0	0	0	852 bis 2282	
H75-D	24560	11000				2288 bis 18788	

Beachten Sie für die Berechnung der zulässigen Momente die Seiten SL-5ff

Tab. 103

Kenndaten	Тур
	H75
Max. Verfahrgeschwindigkeit [m/s]	7
Max. Beschleunigung [m/s²]	15
Wiederholgenauigkeit [mm]	0,1
Lineare Genauigkeit [mm]	0,8
Compact Rail Tragschiene	ULV43
Läufertyp	CS43 spez.
Trägheitsmoment ly [cm4]	127
Trägheitsmoment lz [cm4]	172
Läufermasse [g]	1242
Gewicht mit Nullhub [g]	4160
Gewicht mit 1 m Hub [g]	9381
Max. Hub [mm]	7500
Betriebstemperatur	-20 °C bis + 80 °C

Tab. 102

Schmierung

Die Laufbahnen der Führungsschienen in den Uniline-Linearachsen sind vorgefettet. Um die berechnete Lebensdauer zu erreichen, muss immer ein Schmierfilm zwischen Laufbahn und Rolle vorhanden sein, der außerdem einen Korrosionsschutz der geschliffenen Laufbahnen darstellt. Als Richtwert kann von einer Schmierfrist alle 100 km oder alle sechs Monate ausgegangen werden. Als Schmiermittel empfehlen wir ein Wälzlagerfett auf Lithiumbasis mittlerer Konsistenz.

Schmierung der Laufbahnen

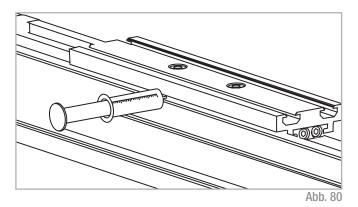
Die ordnungsgemäße Schmierung bei normalen Bedingungen:

- reduziert die Reibung
- reduziert den Verschleiß
- reduziert die Belastung der Kontaktflächen
- reduziert die Laufgeräusche

Schmiermittel	Verdickungsmittel	Temperaturbereich [°C]	Dynamische Viskosität [mPas]
Wälzlagerfett	Lithiumseife	-30 bis +170	<4500
			Tob 105

Tab. 105

Nachschmierung der Führungsschienen

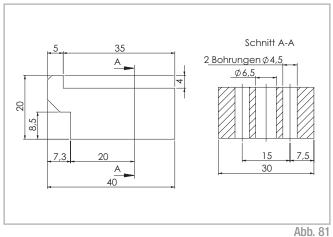

Diese Typen haben seitlich in der Läuferplatte einen Schmierkanal, durch den das Schmiermittel direkt auf die Laufbahnen aufgetragen werden kann. Die Schmierung kann auf zwei Arten erfolgen:

1. Nachschmierung mit der Fettpresse:

Hier wird die Spitze der Fettpresse in den Kanal an der Läuferplatte eingeführt und das Fett hineingepresst (s. Abb. 80). Bitte beachten Sie, dass vor der eigentlichen Schmierung der Schienenlaufbahnen der Kanal befüllt wird und daher eine ausreichende Menge Fett zu verwenden ist.

2. Automatisches Schmiersystem:

Vom Ausgang des Schmiersystems zur Lineareinheit wird als Verbindung ein Adapter* benötigt, welcher in die Bohrung des Läuferplattenkanals hineingeschraubt wird. Der Vorteil dieser Lösung liegt in der Möglichkeit der Nachschmierung der Schienenlaufbahnen ohne Maschinenstopp. *(Evtl. notwendiger Adapter muss kundenseitig angefertigt werden.)

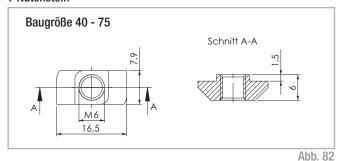

Reinigung der Führungsschienen

Es ist immer zu empfehlen, die Laufschienen vor jeder Nachschmierung zu säubern, um Fettreste zu entfernen. Dies kann bei Wartungsarbeiten an der Anlage oder bei einem geplanten Maschinenstopp, erfolgen.

- 1. Säubern Sie die Schienenlaufbahnen mit einem sauberen und trockenen Lappen. Achten Sie darauf, dass alle Fett- und Schmutzreste von vorhergehenden Arbeitsprozessen entfernt werden. Damit die Schienen über die ganze Länge gesäubert werden, sollten Sie die Läuferplatte einmal über die ganze Länge bewegen.
- 2. Tragen Sie eine ausreichende Menge Fett auf die Laufflächen auf.

Zubehör

Befestigungsklemme APF-2

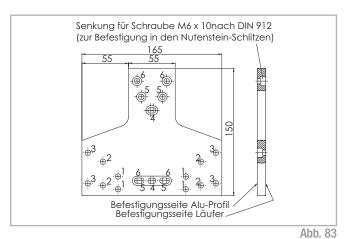


Befestigungsklemme zur einfachen Montage einer Linearachse auf eine Montagefläche oder zur Verbindung zweier Einheiten mit oder ohne Verbindungsplatte (s. S. US-63).

Eventuell ist ein Distanzstück* erforderlich.

*(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden)

T-Nutenstein



Das maximale Anzugsdrehmoment beträgt 10 Nm.

Montagekits

T-Verbindungsplatte APC-1

Verbindungsplatte zur Montage der Antriebs- oder Umlenkköpfe mit der Läuferplatte einer dazu rechtwinklig angeordneten Linearachse (s. S. US-65). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Hinweis

Bei Verwendung von APC-1-Platten mit den Baureihen E- und ED kontaktieren Sie bitte die technische Abteilung von Rollon. Bei der Standardausführung gibt es eine Beeinträchtigung zwischen U-Schiene und APC-1-Platte. Eine spezielle Ausführung mit kürzerer U-Schiene an beiden Enden wird in das Angebot aufgenommen.

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 106

Winkel-Verbindungsplatte APC-2

Winkel-Verbindungsplatte zur Montage der Läuferplatte mit dem Aluminiumprofil einer im 90°-Winkel angeordneten Linearachse (s. S. US-61). Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

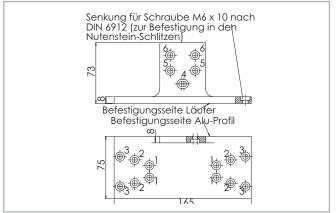


Abb. 84

Größe	Befestigungsbohrungen für den Läufer	Befestigungsbohrungen für das Profil
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 107

Kreuz-Verbindungsplatte APC-3

Kreuz-Verbindungsplatte zur Montage zweier Läufer im rechten Winkel zueinander (s. S. US-62).

Alle Platten werden mit Schrauben M6 x 10 nach DIN 912 und T-Nutensteinen zur Befestigung an die Lineareinheiten geliefert.

Größe	Befestigungsbohrungen für den Läufer 1	Befestigungsbohrungen für den Läufer 2
40	Bohrungen 1	Bohrungen 4
55	Bohrungen 2	Bohrungen 5
75	Bohrungen 3	Bohrungen 6

Tab. 108

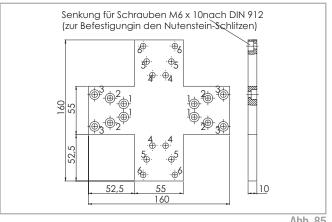
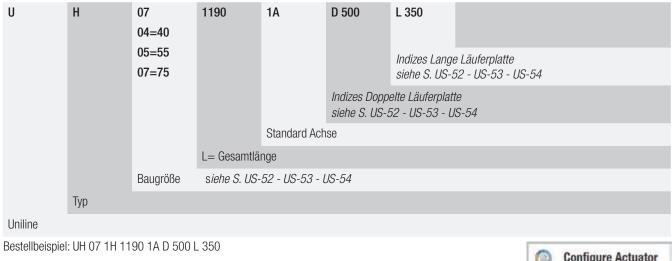
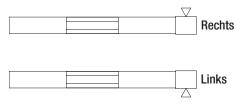



Abb. 85

Bestellschlüssel


Bestellbezeichnung für Lineareinheiten UNILINE H Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

Riemenspannung

Alle Uniline-Linearachsen werden mit einer Standard-Riemenspannung geliefert, die für die meisten Anwendungen ausreichend ist (s. Tab. 109)

Größe	40	55	75	ED75
Riemenspannung [N]	160	220	800	1000
				Tal- 100

Tab. 109

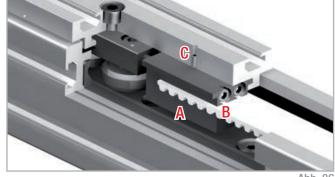


Abb. 86

Das Riemenspannsystem für die Baugrößen 40 bis 75 an den Enden der Läuferplatten, sowie am Umlenkkopf für die Baugröße 100, ermöglichen eine Einstellung der Zahnriemenspannung entsprechend den erforderlichen Anforderungen.

Zur Einstellung für die Baugrößen 40 bis 75 sind nachstehende Schritte zu befolgen (die Bezugswerte sind Standardwerte):

- 1. Legen Sie die Abweichung der Riemenspannung vom Standardwert fest.
- 2. Aus den nebenstehenden Abbildungen 87 und 88 ist zu entnehmen, wie oft die Riemenspannschrauben B zu drehen sind, bis die gewünschte Abweichung der Riemenspannung erreicht ist.
- 3. Die Länge des Zahnriemens (m) ist:
 - L = 2 x Hub (m) + 0.515 m (Baugröße 40);
 - L = 2 x Hub (m) + 0.630 m (Baugröße 55);
 - L = 2 x Hub (m) + 0,792 m (Baugröße 75).
- 4. Multiplizieren Sie die Anzahl der Umdrehungen (s. Punkt 2) mit der Zahnriemenlänge m, (s. Punkt 3).
- 5. Lösen Sie die Sicherungsschraube C.
- Drehen Sie die Riemenspannschrauben B entsprechend der vorstehenden Erklärung. Ziehen Sie die Sicherungsschraube C wieder an.

Beispiel:

Erhöhung der Riemenspannung von 220 N auf 330 N bei einer A55 - 1070: 1. Abweichung = 330 N - 220 N = 110 N.

- Aus den Abbildungen 95 und 96 ist der Wert von 0,5 Umdrehungen zu entnehmen, um den die Riemenspannschrauben B pro Meter Zahnriemen gedreht werden müssen, damit die Riemenspannung um 110 N vergrößert wird.
- 3. Formel zur Berechnung der Länge des Zahnriemens: $L=2 \ x \ Hub \ (m) + 0,630 \ m = 2 \ x \ 1,070 + 0,630 = 2,77 \ m.$
- 4. Die erforderliche Anzahl der Umdrehungen ist also:
 - $0.5 \text{ U/m} \times 2.77 \text{ m} = 1.4 \text{ U}.$
- 5. Lösen Sie die Sicherungsschraube C.
- 6. Drehen Sie die Riemenspannschrauben B unter Zuhilfenahme einer externen Referenz um 1,4 Umdrehungen.
- 7. Ziehen Sie die Sicherungsschraube C wieder an.

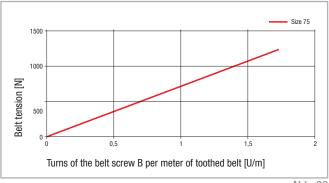



Abb. 87

Abb. 88

Hinweis:

Wenn die Lineareinheit so eingesetzt wird, dass die Belastung direkt auf den Zahnriemen wirkt, ist es wichtig, dass die angegebenen Werte für die Riemenspannung nicht überschritten werden, weil sonst die Positioniergenauigkeit und die Beständigkeit des Zahnriemens nicht garantiert werden können. Falls höhere Werte für die Riemenspannung gefordert werden, wenden Sie sich bitte an unsere Anwendungstechnik.

Montagehinweise // ~

Motoradapterplatten AC2 und AC1-P, Baugröße 40-75

Für die Verbindung der Lineareinheiten mit Motor und Getriebe sind geeignete Adapterplatten zu verwenden. Rollon liefert diese Platten in zwei verschiedenen Ausführungen (s. S. Kap. Zubehör). Die Standardplatten haben bereits die für die Montage an die Lineareinheit benötigten Bohrungen. Die Befestigungsbohrungen für den Motoranschluss müssen kundenseitig angebracht werden. Stellen Sie sicher, dass die montierte Platte nicht mit der Hub verfahrenden Läuferplatte kollidiert.

Abb. 89

Verbindung mit Motor und Getriebe

- 1. Befestigen Sie die Motoradapterplatte am Motor oder Getriebe.
- Verbinden Sie die T-Nutensteine mit den Schrauben, ohne diese festzuziehen und richten Sie die Nutensteine parallel zu den Nutenschlitzen aus.
- 3. Führen Sie durch Ausrichten der Passfeder in die Passfedernut die Anschlusswelle in den Antriebskopf ein.
- 4. Befestigen Sie die Motoradapterplatte am Antriebskopf der Linearachse mittels Nutensteine (s. S. Kap. Zubehör). Achten Sie hierbei auf den korrekten Sitz der Adapterplatte.

T- Verbindungsplatte APC-1, Baugröße 40 - 75

Verbindung zweier Linearachsen mit Hilfe der T-Verbindungsplatte APC-1 (s. S. Kap. Zubehör). Zur Montage der oben genannten Konfiguration sollte nach folgenden Schritten vorgegangen werden:

- Fixieren Sie die Verbindungsplatte durch Einführen der Schrauben in die vorbereiteten Bohrungen an der APC-1 (s. Abb. 90).
- Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten Sie die Nutensteine parallel zu den Nutensteinschlitzen der Einheit aus.
- Setzen Sie die Platte an die L\u00e4ngsseite der Einheit 1 und ziehen Sie die Schrauben an. Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht worden sind.
- 4. Um die Platte an Einheit der 2 zu befestigen, führen Sie die Schrauben von der Längsseite der Einheit 1 ein (s. Abb. 91).
- 5. Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten sie die Nutensteine parallel zu den Nutensteinschlitzen der Läuferplatte der Einheit 2 aus.
- 6. Setzen Sie die Platte gegen die Läuferplatte und ziehen Sie die Schrauben an. Wichtig: Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht wurden.

Hinweis:

- Die Verbindungsplatten für die Uniline A40 werden mit vier Befestigungsbohrungen geliefert, auch wenn nur zwei Bohrungen für die Verbindung benötigt werden. Durch die vorhandenen vier Bohrungen ist die Platte symmetrisch gestaltet.
- Bei der Uniline Baureihe C können wegen der konstruktiven Form des Aluminiumprofils nur drei Befestigungsbohrungen genutzt werden (s. S. US-18, Abb. 24).

Abb. 90

Abb. 91

Beispiel 1 System bestehend aus 2 X- und 1 Y-Achsen

Die Verbindung der beiden Einheiten wird über die parallelen Läuferplatten und die Antriebsköpfe geschaffen. Bei dieser Konfiguration empfehlen wir, unsere Verbindungsplatte APC-1 zu verwenden.

Abb. 92

Winkel-Verbindungsplatte APC-2, Baugröße 40 - 75

Verbindung zweier Linearachsen mit Hilfe der Winkel-Verbindungsplatte APC-2. Zur Montage der oben genannten Konfiguration sollte nach folgenden Schritten vorgegangen werden:

- 1. Führen Sie die zu verwendenden Schrauben für die Verbindung mit Einheit 1 in die vorbereiteten Bohrungen ein (s. Abb. 93).
- Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten Sie die Nutensteine parallel zu den Nutensteinschlitzen der Läuferplatten aus.
- Setzen Sie die Verbindungsplatte an die L\u00e4uferplatte und ziehen Sie die Schrauben an. Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht wurden.
- 4. Damit die Verbindungsplatte an Einheit 2 befestigt werden kann, führen Sie die Schrauben in die vorbereiteten Bohrungen an der schmalen Plattenseite ein (s. Abb. 94).
- 5. Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten sie die Nutensteine parallel zu den Nutensteinschlitzen des Aluminiumprofils der Einheit 2 aus.
- 6. Setzen Sie die Verbindungsplatte an die Läuferplatte der Einheit und ziehen Sie die Schrauben an. Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht worden sind.



Abb. 93

Abb. 94

Beispiel 2 – System bestehend aus 1 X- und 1 Z-Achse

Bei dieser Konfiguration wird die Z-Achse mittels Winkel-Verbindungsplatte APC-2 mit der Läuferplatte der X-Achse verbunden.

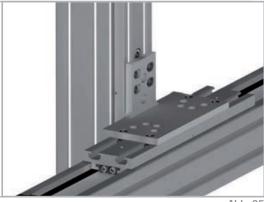


Abb. 95

Kreuz-Verbindungsplatte APC-3, Baugröße 40 - 75

Verbindung zweier Linearachsen mit Hilfe der Kreuz-Verbindungsplatte APC-3 (s. S. Kap. Zubehör). Zur Montage der oben genannten Konfiguration sollte nach folgenden Schritten vorgegangen werden:

- 1. Führen Sie die Schrauben von einer Seite der Verbindungsplatte in die vorbereiteten Bohrungen ein (s. Abb. 96).
- 2. Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten sie die Nutensteine parallel zu den Nutensteinschlitzen der Läuferplatte der Einheit 1 aus.
- 3. Setzen Sie die Verbindungsplatte an die L\u00e4uferplatte und ziehen Sie die Schrauben an. Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht worden sind.
- 4. Führen Sie die Schrauben von der anderen Seite der Verbindungsplatte ein (s. Abb. 97).
- 5. Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten sie die Nutensteine parallel zu den Nutensteinschlitzen der Läuferplatte der Einheit 2 aus.
- 6. Setzen Sie die Verbindungsplatte an die Läuferplatte und ziehen Sie die Schrauben an. Bitte stellen Sie sicher, dass die Nutensteine in den Schlitzen um 90° gedreht worden sind.



Abb. 96

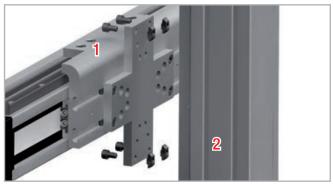


Abb. 97

Beispiel 3 - System bestehend aus 2 X-Achsen, 1 Y- und 1 Z-Achse

Die Verbindung von vier Lineareinheiten zu einem 3-Achs-Portal. Die vertikale Achse ist freitragend an der zentralen Einheit angeordnet. Hierzu werden die beiden Läuferplatten unter Verwendung der Kreuz-Verbin-

dungsplatte APC-3 miteinander verbunden. Die Verbindung der beiden parallelen Achsen mit der zentralen Einheit wird mit der T-Verbindungsplatte APC-1 erreicht.

Abb. 98

Befestigungsklemme APF-2, Baugröße 40 - 75

Verbindung zweier Linearachsen mit Hilfe der Befestigungsklemmen APF-2 (s. S. Kap. Zubehör). Zur Montage der oben genannten Konfiguration sollte nach folgenden Schritten vorgegangen werden:

- Führen Sie die Befestigungsschrauben in die Klemme ein und setzen Sie falls erforderlich ein Distanzstück* zwischen Klemme und Läuferplatte ein. *(Evtl. notwendiges Distanzstück muss kundenseitig angefertigt werden.)
- Verbinden Sie die T-Nutensteine mit den Schrauben, ohne die Schrauben festzuziehen und richten sie die Nutensteine parallel zu den Nutensteinschlitzen der Läuferplatten aus.
- 3. Führen Sie den vorspringenden Teil der Klemme in den unteren Nutensteinschlitz des Aluminiumprofils der Einheit 1 ein.
- Positionieren Sie die Klemme l\u00e4ngsseitig, gem\u00e4\u00df der gew\u00fcnschten Position der L\u00e4uferplatte der Einheit 2.
- 5. Ziehen Sie die Befestigungsschrauben an. Bitte stellen Sie sicher, dass

- die Nutensteine in den Schlitzen um 90° gedreht worden sind.
- 6. Wiederholen Sie diesen Vorgang für die erforderliche Anzahl der Befestigungsklemmen.

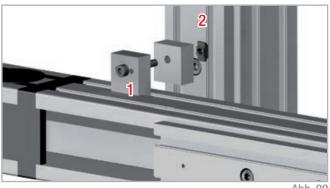


Abb. 99

Beispiel 4 – System bestehend aus 1 Y-Achse und 2 Z-Achsen

Die Verbindung der Y-Achse an die paralellen Läuferplatten der Z-Achsen wird hier über die Befestigungsklemmen APF-2 realisiert.

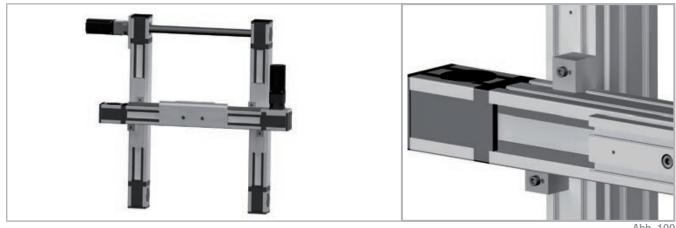


Abb. 100

Modline

MCR/MCH Serie / ~

Beschreibung MCR/MCH

Abb. 1

Die Linearachsen der Produktfamilie MCR/MCH System bestehen aus einem selbsttragenden Aluminium-Strangpressprofil und einem Antrieb durch einen stahlverstärkten Zahnriemen aus Polyurethan mit AT-Zahnprofil.

- Das reduzierte Gewicht wird durch den leichten Rahmen und die Aluminiumläufer erreicht.
- Es sind drei verschiedene Baugrößen erhältlich: 65, 80, 105 mm
- Hole Verfahrgeschwindigkeiten

MCR

Vier + vier Laufrollen mit gotischem Laufbahnprofil oder flachem Außenprofil, die auf zwei Stangen aus gehärtetem Stahl im Inneren des Profils geführt werden.

MCH

Im Inneren des Profils befindet sich eine wartungsarme Kugelumlaufführung.

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der Serie MCR/MCH eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Die Abmessungen sind entsprechend der Norm EN 755-9 toleriert. Das verwendete Material ist eloxiertes Aluminium der Legierung 6060. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebsriemen

In den Lineareinheiten der Serie MCR/MCH werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemen-

scheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens könnendie folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Der Antriebsriemen läuft an der Oberseite des Aluminiumprofils in Führungsnuten und deckt dadurch das sich im Profilinnern befindliche Antriebs- bzw. Führungssystem ab.

Laufwagen

Der Laufwagen der Lineareinheiten der Serie MCH/MCR besteht aus eloxiertem Aluminium. Für die Größen 80 und 105 sind zwei unterschiedlich lange Wagen verfügbar.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J	0 400	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2,70	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N	N	%	_
mm ²	mm²		
205	165	10	60-80

Führungssystem

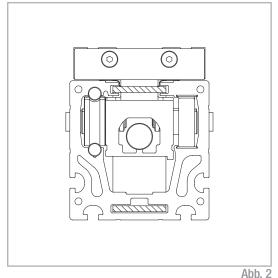
Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

MCR mit gotischem Laufbahnprofil

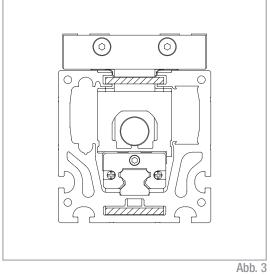
- In das Aluminiumgehäuse sind Stäbe aus gehärtetem Stahl (58/60 HRC, Toleranz H6) fest eingesetzt.
- Der Wagen ist mit vier + vier Lagereinheiten ausgestattet, von denen vier gotisches Laufbahnprofil in ihren Außenring haben, um auf den Stahlstangen zu laufen, und vier mit einem flachen Außenring versehen sind.
- Die Lager sind auf Stahlstiften montiert, von denen zwei exzentrisch ausgeführt sind, um die Einstellung des Spiels und der Vorspannung zu ermöglichen.
- Der Antriebsriemen wird über die gesamte Profillänge unterstützt, um ein Durchbiegen zu vermeiden und die Linearführung zu schützen.

Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Gute Positioniergenauigkeit
- Hohe Laufruhe
- Wartungsarm (abhängig vom Anwendungsfall)

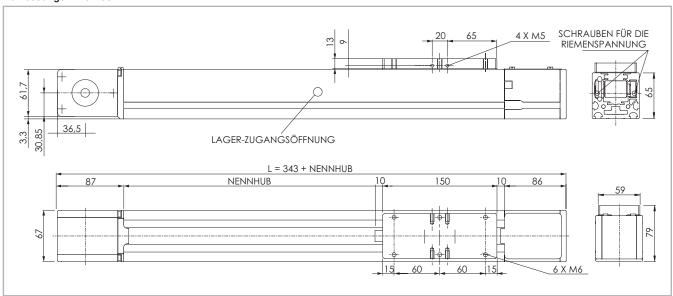

MCH mit Kugelumlaufführung

- Eine Kugelumlaufführung mit hoher Belastbarkeit ist in einem eigenen
 Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen wird auf zwei vorinstallierte Kugellagerblöcke montiert.
- Die zwei Kugellagerblöcke ermöglichen es dem Laufwagen, Belastungen in den vier Hauptrichtungen zu widerstehen.
- Die beiden Blöcke haben Dichtungen auf beiden Seiten. Falls erforderlich kann in sehr staubigen Umgebungen ein zusätzlicher Abstreifer montiert werden.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.


Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe zulässige Momentbelastungen
- Hohe Geschwindigkeiten und hohe Beschleunigungen
- Hohe Tragzahlen
- Niedrige Verschiebewiderstände
- Hohe Lebensdauer
- Geräuscharm

MCR



MCH

MCR 65

Abmessungen MCR 65

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 4

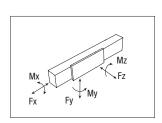
Technische Daten

	Тур
	MCR 65
Maximale Hublänge [mm] *1	5830
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	32 AT 05
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	0,87
Gewicht Hub Null [kg]	3,7
Gewicht je 100 mm Hub [kg]	0,475
Losbrechmoment [Nm]	0,4
Riemenscheiben-Trägheitsmoment [g mm²]	267443
Schienengröße [mm]	Ø8
*1) Hublängen bis 9000 mm als Stoßversion möglich	Tab.

^{*1)} Hublängen bis 9000 mm als Stoßversion möglich *2) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
MCR 65	804.878	678.230	1.483.108
			Tab. 5

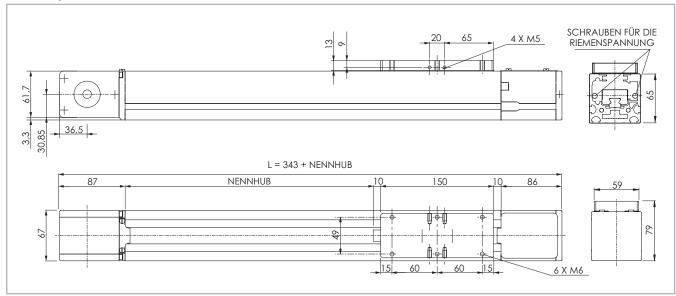

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbrei- te [mm]	Gewicht [kg/m]
MCR 65	32 AT 05	32	0,105

Tab. 6

Riemenlänge (mm) = $2 \times L - 69$


MCR 65 - Tragzahlen

Тур	F [N	: X V]	F _y [N]	F [t	: z V]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 65	1344	960	1964	2192	9195	65,1	132	93,9

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

MCH 65

Abmessungen MCH 65

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 5

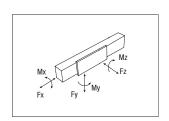
Technische Daten

	Тур
	MCH 65
Maximale Hublänge [mm] *1	5830
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	30
Zahnriemen-Typ	32 AT 05
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	50,93
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	160
Gewicht des Laufwagens [kg]	0,9
Gewicht Hub Null [kg]	3,85
Gewicht je 100 mm Hub [kg]	0,58
Losbrechmoment [Nm]	0,3
Riemenscheiben-Trägheitsmoment [g mm²]	267443
Schienengröße [mm]	15
*1) Hublängen bis 9000 mm als Stoßversion möglich	Tab. 8

^{*1)} Hublängen bis 9000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
MCH 65	804.878	678.230	1.483.108


Tab. 9

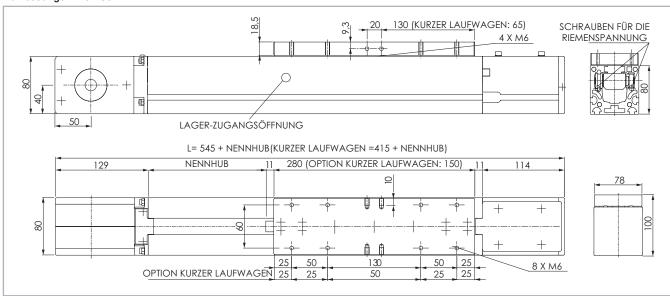
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbrei- te [mm]	Gewicht [kg/m]
MCH 65	32 AT 05	32	0,105
			Tab. 10

Riemenlänge (mm) = $2 \times L - 69$

MCH 65 - Tragzahlen


Тур	F [1	: x V]	F [t	: v <mark>j</mark>	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 65	1344	960	30560	19890	30560	240	1406	1406

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

MCR 80

Abmessungen MCR 80

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb.6

Technische Daten

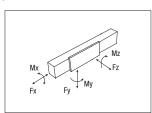
	T	/p
	MCR 80	MCR 80 C
Maximale Hublänge [mm] *1	5700	5830
Max. Wiederholgenauigkeit [mm]*2	± 0,1	± 0,1
Maximale Geschwindigkeit [m/s]	5	5
Maximale Beschleunigung [m/s²]	20	20
Zahnriemen-Typ	32 AT 10	32 AT 10
Typ Zahnriemenscheibe	Z 22	Z 22
Riemenscheibendurchmesser [mm]	70,03	70,03
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	220	220
Gewicht des Laufwagens [kg]	2,2	1,25
Gewicht Hub Null [kg]	8,8	6,95
Gewicht je 100 mm Hub [kg]	0,7	0,7
Losbrechmoment [Nm]	0,7	0,7
Riemenscheiben-Trägheitsmoment [g mm²]	1174346	1174346
Schienengröße [mm]	Ø8	Ø8
*1) Hublängen bis 9000 mm als Stoßversion möglich		Tab. 12

^{*1)} Hublängen bis 9000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[mm⁴]	[mm⁴]	[mm⁴]
MCR 80	1.791.166	1.468.518	3.259.684

Tab. 13


Antriebsriemen

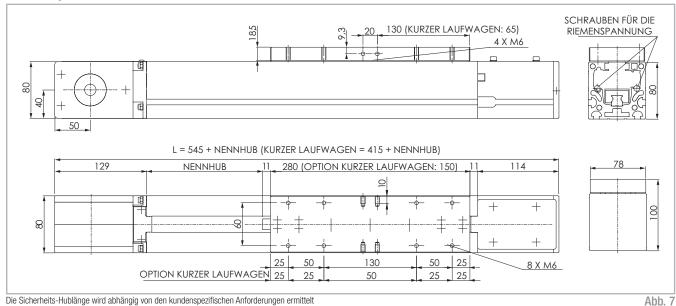
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]
MCR 80	32 AT 10	32	0,185

Tab. 14

Riemenlänge (mm) = $2 \times L - 182$ Kurzer Laufwagen (mm) = $2 \times L - 52$

MCR 80 - Tragzahlen


Тур	F [!	: × V]	F _y [N]	F [I	: N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 80	2656	1760	1964	2579	9195	85,4	361	193
MCR 80 C	2656	1760	1964	2579	9195	85,4	156	93,9

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

MCH 80

Abmessungen MCH 80

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

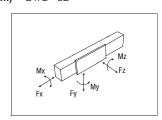
	Ty	/p
	MCH 80	MCH 80 C
Maximale Hublänge [mm] *1	5700	5830
Max. Wiederholgenauigkeit [mm]*2	± 0,1	± 0,1
Maximale Geschwindigkeit [m/s]	5	5
Maximale Beschleunigung [m/s²]	40	40
Zahnriemen-Typ	32 AT 10	32 AT 10
Typ Zahnriemenscheibe	Z 22	Z 22
Riemenscheibendurchmesser [mm]	70,03	70,03
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	220	220
Gewicht des Laufwagens [kg]	2,45	1,3
Gewicht Hub Null [kg]	9,4	7,1
Gewicht je 100 mm Hub [kg]	0,79	0,79
Losbrechmoment [Nm]	0,9	0,9
Riemenscheiben-Trägheitsmoment [g mm²]	1174346	1174346
Schienengröße [mm]	15	15

^{*1)} Hublängen bis 9000 mm als Stoßversion möglich

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	
	[mm⁴]	[mm⁴]	[mm⁴]
MCH 80	1.791.166	1.468.518	3.259.684

Tab. 17


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

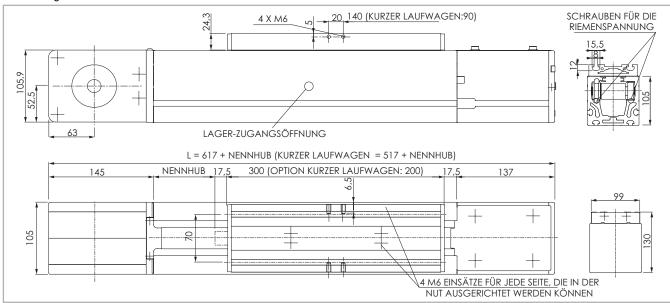
Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]
MCH 80	32 AT 10	32	0,185
MCH 80	32 AT 10	32	0,185

Tab. 18

Riemenlänge (mm) = $2 \times L - 182$ Kurzer Laufwagen (mm) = $2 \times L - 52$

MCH 80 - Tragzahlen

Тур	F _x [N]		F _y [N]		F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 80	2656	1760	30560	19890	30560	240	3285	3285
MCH 80 C	2656	1760	15280	9945	15280	120	90	90


Tab. 16

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

MCR 105

Abmessungen MCR 105

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 8

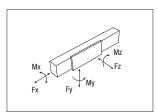
Technische Daten

	Тур		
	MCR 105	MCR 105 C	
Maximale Hublänge [mm]	10100	10100	
Max. Wiederholgenauigkeit [mm]*1	± 0,1	± 0,1	
Maximale Geschwindigkeit [m/s]	5	5	
Maximale Beschleunigung [m/s²]	20	20	
Zahnriemen-Typ	40 AT 10	40 AT 10	
Typ Zahnriemenscheibe	Z 29	Z 29	
Riemenscheibendurchmesser [mm]	92,31	92,31	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	290	290	
Gewicht des Laufwagens [kg]	3,51	2,56	
Gewicht Hub Null [kg]	17,15	14,9	
Gewicht je 100 mm Hub [kg]	1,2	1,2	
Losbrechmoment [Nm]	1,2	1,2	
Riemenscheiben-Trägheitsmoment [g mm²]	4482922	4482922	
Schienengröße [mm]	Ø10	Ø10	
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart		Tab. 20	

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]	
MCR 105	4.476,959	5.675,808	10.152,767	
			Tab. 21	

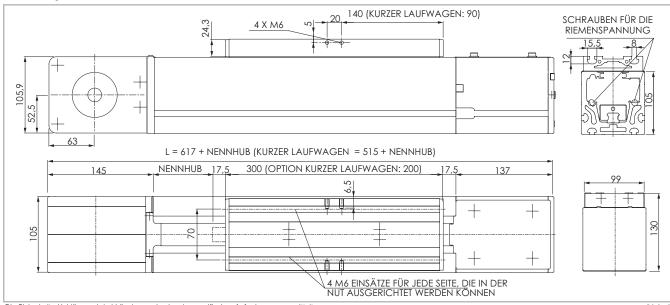

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]	
MCR 105	40 AT 10	40	0,231	

Tab. 22

Riemenlänge (mm) = $2 \times L - 165$ Kurzer Laufwagen (mm) = $2 \times L - 65$


MCR 105 - Tragzahlen

Тур	F _x [N]		F _y [N]	F _z [N]		M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.
MCR 105	3984	2640	4250	7812	26997	340	1033	417
MCR 105 C	3984	2640	4250	7812	26997	340	544	250

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

MCH 105

Abmessungen MCH 105

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb.9

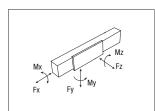
Technische Daten

	Т	/p
	MCH 105	MCH 105 C
Maximale Hublänge [mm]	10,100	10,100
Max. Wiederholgenauigkeit [mm]*1	± 0,1	± 0,1
Maximale Geschwindigkeit [m/s]	5	5
Maximale Beschleunigung [m/s²]	50	50
Zahnriemen-Typ	40 AT 10	40 AT 10
Typ Zahnriemenscheibe	Z 32	Z 32
Riemenscheibendurchmesser [mm]	92,31	92,31
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	290	290
Gewicht des Laufwagens [kg]	3,5	2,3
Gewicht Hub Null [kg]	17,5	14,4
Gewicht je 100 mm Hub [kg]	1,36	1,36
Losbrechmoment [Nm]	1,5	1,5
Riemenscheiben-Trägheitsmoment [g mm²]	4482922	4482922
Schienengröße [mm]	20	20

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
MCH 105	4.476.959	5.675.808	10.152.767
			Tab. 25


Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

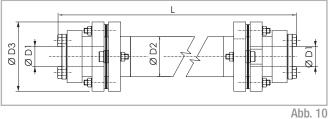
Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]
MCH 105	40 AT 10	40	0,231

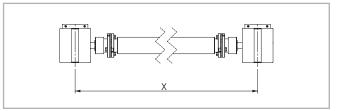
Tab. 26

Riemenlänge (mm) = $2 \times L - 165$ Kurzer Laufwagen (mm) = $2 \times L - 65$

MCH 105 - Tragzahlen

Тур	F [I	: X Nj	F [1	: v v	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
MCH 105	3984	2640	51260	36637	51260	520	5536	5536
MCH 105 C	3984	2640	25630	18319	25630	260	190	190

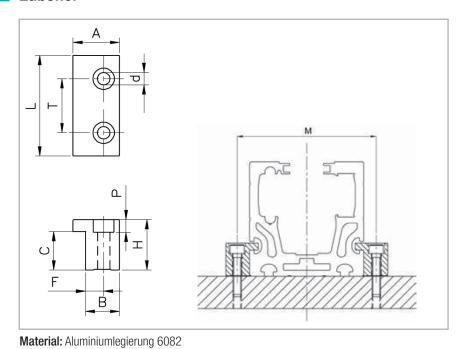

Tab. 24

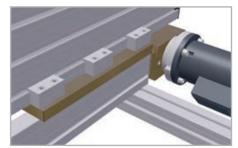

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Lineareinheiten im Paralleleinsatz

Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Lineareinheiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.




O Abb. 11

Passend für Typ	Zapfentyp	D1	D2	D3	Bestellcode	L
MCR/MCH 65	AP 12	12	25	45	GK12P1A	L= X-80 [mm]
MCR/MCH 80	AP 20	20	40	69,5	GK20P1A	L= X-97 [mm]
MCR/MCH 105	AP 25	25	70	99	GK25P1A	L= X-130 [mm]

Tab. 28

Zubehör

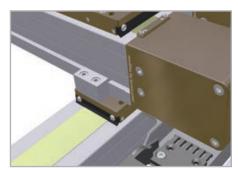
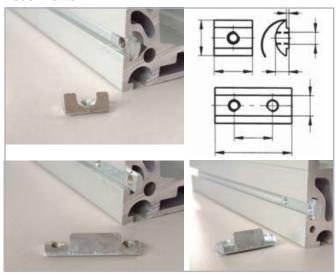



Abb. 12

Тур	А	L	Т	d	Н	Р	С	F	В	M	Bestellcode
MCR/MCH 65	25	50	25	6,7	20	6,8	13,5	10	18	87	415.0380
MCR/MCH 80	25	50	25	6,7	25	6,8	18,6	10	18	100	415.0760
MCR/MCH 105	30	50	25	9	30	9,5	23,6	12	22	129	415.0761

Einsetzbare Muttern und Platten

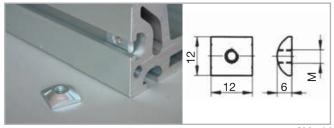
Federmutter

Λ	L	L	-4	0
Δ	n	m	- 1	
$\overline{}$	w	w		٠,

Die Mutter ist alle Module geeignet (8 mm-Nut).

Material: Mutter aus verzinktem Stahl, mit der Stahlfeder verschweißt.

Einzelmutter	MC 80-105	MC 65
M5	A32-55	B32-55
M6	A32-65	B32-65
M8	A32-85	B32-85
		Tab. 30

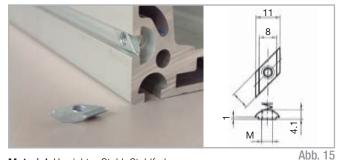

Doppelmutter	MC 80-105	MC 65
M6	A32-67	B32-67

Tab. 31

Größe					
Basismodul	D	Н	L	L1	T
MC 80-105	14	7.8	20	40	30
MC 65	11	4.1	20	40	30

Tab. 32

Einfache Mutter

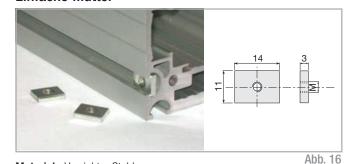


Gewinde	Bestellcode
M5	209.2431
M6	209.2432
M8	209.2433
	Tab. 33

Abb. 14

Material: Verzinkter Stahl. Vom Ende des Profils her einführen. Geeignet für die Baureihen: MC 80-105

Stirnseitig einsetzbare Federmutter


Material: Verzinkter Stahl, Stahlfeder.

einschwenkbar.

Geeignet für die Baureihen: MC 65

Gewinde	Bestellcode
M3	BD31-30
M4	BD31-40
M5	BD31-50
M6	BD31-60

Einfache Mutter

Material: Verzinkter Stahl. Durch die Nut einführen.

Geeignet für die Baureihen: MC 65

Gewinde	Bestellcode
M4	D32.40
M5	D32.50
M6	D32.60
	Tab. 35

Sensorhalterungen

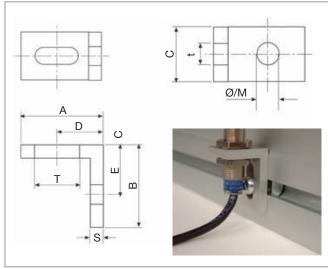


Abb. 17

Material: Natürlich eloxierte, nicht korrosive Legierung

Gewinde Bestellcode								llcode	
Α	В	С	D	Е	S	Txt	Ø/M	Ø	М
45	45	20	25	25	5	20X6,5	6	A30-76	A 30-86
35	25	20	19	15	5	20X6,5	4	A30-54	A30-64
35	25	20	19	15	5	20X6,5	5	A30-55	A30-65
35	25	20	19	15	5	20X6,5	6	A30-56	A30-66
25	25	15	14	15	4	13,5X5,5	3	B30-53	B30-63
25	25	14	14	15	4	13,5X5,5	4	B30-54	B30-64
25	25	15	14	15	4	13,5X5,5	5	B30-55	B30-65
25	25	15	14	15	4	13,5X5,5	6	B30-56	B30-66

Für alle Module geeignet

Tab. 36

Stahlabdeckung für die Baureihe MCR/MCH 80-105

Material: Edelstahlfolie

Optional: Zum zusätzlichen Schutz vor Staub und Schmutz kann ein magnetischer Dichtungsstreifen am Profil installiert werden, um den Riemen abzudecken. Aufgrund des Magnetstreifens wird empfohlen, die Verwendung in Gegenwart von eisenhaltigen Ablagerungen zu vermeiden.

 $\mathbf{M} = \text{Gewindeausf\"{u}hrung}$

 $\mathbf{Ø} = \text{Ausf\"{u}}$ hrung ohne Gewinde

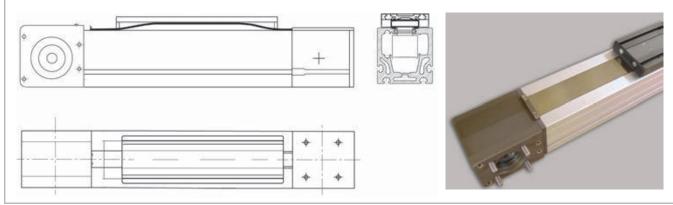
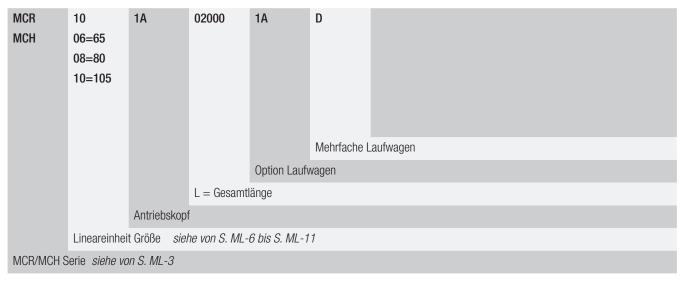
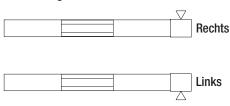



Abb. 18

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten MCR/MCH Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

TCR/TCS Serie

Beschreibung TCR/TCS

Abb. 19

Die Lineareinheiten der Baureihe TCR/TCS eignen sich besonders für hohe Belastungen, das Ziehen und Schieben sehr schwerer Massen, anspruchsvolle Arbeitszyklen, freitragenden Einbau bei Gantry-Bauweise und für den Betrieb in automatisierten Industrielinien.

Die Baureihe umfasst Lineareinheiten mit selbsttragenden Aluminium-Strangpressprofilen, die in vier Baugrößen von 140 bis 360 mm erhältlich sind. Der Antrieb erfolgt durch einen stahlverstärkten Zahnriemen aus Polyurethan. Zur zusätzlichen Erhöhung der Belastungsfähigkeit sind auch Mehrfachläufer lieferbar.

Diese Einheiten werden vor allem für Anwendungen benutzt, bei denen sehr hohe Belastungen auf sehr engem Raum auftreten und bei denen die Maschinen für die regelmäßigen Wartungsarbeiten nicht angehalten werden können.

TCR

Verfügt über ein doppeltes "Prismatic Rail"-System.

TCS

Verfügt über ein Doppelschienensystem mit vier Führungswagen mit Kugelumlaufführungen.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe TCR/TCS verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemescheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der TCR/TCS Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der TCR/TCS Serie besteht aus eloxiertem Aluminium.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 37

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 $^{ ext{-9}}$	°C
dm ³	mm²	K	m . K	kg . K		
2,7	70	23,8	200	880-900	33	600-655

Tab. 38

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	$\frac{N}{mm^2}$	%	_
250	200	10	75

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

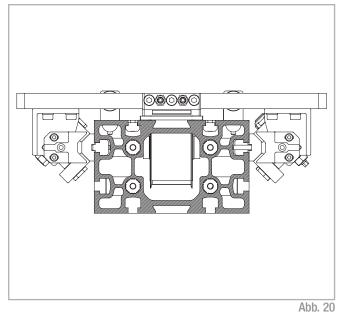
TCR mit Prismatic Rail:

Die Schienen des Systems "Prismatic Rail" bestehen aus speziell behandeltem Kohlenstoffstahl und sind mit Lebensdauergeschmierten Lagern ausgestattet. Dank dieser Lösung eignet sich TCR speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung.

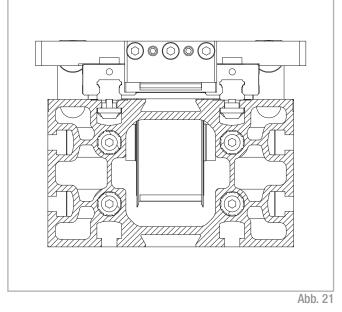
- Die prismatischen Schienen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit einer Vorspannung versehen, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Gehärtete und geschliffene Führungsschienen aus Stahl.
- Die Läufer sind mit Filzelementen zur Selbstschmierung ausgestattet.

Merkmale des beschriebenen linearen Bewegungssystems:

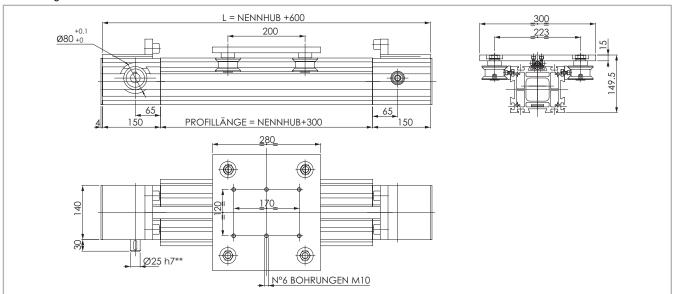
- Geeignet für schmutzige Umgebungen
- Hohe Geschwindigkeit und Beschleunigung
- Wartungsarm
- Hohe Tragzahlen
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung


TCS mit Kugelumlaufführungen:

- Die Kugelumlaufführungen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit vorgespannten Kugellagerblöcken ausgestattet, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- Die Blöcke verfügen über Dichtungen auf beiden Seiten.


Merkmale des beschriebenen linearen Bewegungssystems:

- Hohe zulässige Biegemomente
- Hohe Bewegungsgenauigkeit
- Hohe Geschwindigkeit und Beschleunigung
- Hohe Tragzahlen
- Hohe Steifigkeit
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung


TCR Schnitt

TCS Schnitt

Abmessungen TCR 140

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt
** Eine Antriebswelle ist die einzige verfügbare Option

Abb.22

Technische Daten

Maximale Hublänge [mm] 9700 Max. Wiederholgenauigkeit [mm]*1 ± 0,1 Maximale Geschwindigkeit [m/s] 5 Maximale Beschleunigung [m/s²] Zahnriemen-Typ 32 AT 10 Typ Zahnriemenscheibe Z 32 Riemenscheibendurchmesser [mm] 101,86 Laufwagenhub je Umdrehung Zahnriemenscheibe [mm] 320 Gewicht des Laufwagens [kg] 6,0 Gewicht Hub Null [kg] 21,2 Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] Riemenscheiben-Trägheitsmoment [g mm²] 978467		Тур
Max. Wiederholgenauigkeit [mm]*1± 0,1Maximale Geschwindigkeit [m/s]5Maximale Beschleunigung [m/s²]20Zahnriemen-Typ32 AT 10Typ ZahnriemenscheibeZ 32Riemenscheibendurchmesser [mm]101,86Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]320Gewicht des Laufwagens [kg]6,0Gewicht Hub Null [kg]21,2Gewicht je 100 mm Hub [kg]2,2Losbrechmoment [Nm]3Riemenscheiben-Trägheitsmoment [g mm²]978467		TCR 140
Maximale Geschwindigkeit [m/s]5Maximale Beschleunigung [m/s²]20Zahnriemen-Typ32 AT 10Typ ZahnriemenscheibeZ 32Riemenscheibendurchmesser [mm]101,86Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]320Gewicht des Laufwagens [kg]6,0Gewicht Hub Null [kg]21,2Gewicht je 100 mm Hub [kg]2,2Losbrechmoment [Nm]3Riemenscheiben-Trägheitsmoment [g mm²]978467	Maximale Hublänge [mm]	9700
Maximale Beschleunigung [m/s²]20Zahnriemen-Typ32 AT 10Typ ZahnriemenscheibeZ 32Riemenscheibendurchmesser [mm]101,86Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]320Gewicht des Laufwagens [kg]6,0Gewicht Hub Null [kg]21,2Gewicht je 100 mm Hub [kg]2,2Losbrechmoment [Nm]3Riemenscheiben-Trägheitsmoment [g mm²]978467	Max. Wiederholgenauigkeit [mm]*1	± 0,1
Zahnriemen-Typ32 AT 10Typ ZahnriemenscheibeZ 32Riemenscheibendurchmesser [mm]101,86Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]320Gewicht des Laufwagens [kg]6,0Gewicht Hub Null [kg]21,2Gewicht je 100 mm Hub [kg]2,2Losbrechmoment [Nm]3Riemenscheiben-Trägheitsmoment [g mm²]978467	Maximale Geschwindigkeit [m/s]	5
Typ Zahnriemenscheibe Riemenscheibendurchmesser [mm] Laufwagenhub je Umdrehung Zahnriemenscheibe [mm] Gewicht des Laufwagens [kg] Gewicht Hub Null [kg] Gewicht je 100 mm Hub [kg] Losbrechmoment [Nm] Riemenscheiben-Trägheitsmoment [g mm²]	Maximale Beschleunigung [m/s²]	20
Riemenscheibendurchmesser [mm] 101,86 Laufwagenhub je Umdrehung Zahnriemenscheibe [mm] 320 Gewicht des Laufwagens [kg] 6,0 Gewicht Hub Null [kg] 21,2 Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Zahnriemen-Typ	32 AT 10
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm] 320 Gewicht des Laufwagens [kg] 6,0 Gewicht Hub Null [kg] 21,2 Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Typ Zahnriemenscheibe	Z 32
Gewicht des Laufwagens [kg] 6,0 Gewicht Hub Null [kg] 21,2 Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Riemenscheibendurchmesser [mm]	101,86
Gewicht Hub Null [kg] 21,2 Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	320
Gewicht je 100 mm Hub [kg] 2,2 Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Gewicht des Laufwagens [kg]	6,0
Losbrechmoment [Nm] 3 Riemenscheiben-Trägheitsmoment [g mm²] 978467	Gewicht Hub Null [kg]	21,2
Riemenscheiben-Trägheitsmoment [g mm²] 978467	Gewicht je 100 mm Hub [kg]	2,2
	Losbrechmoment [Nm]	3
	Riemenscheiben-Trägheitsmoment [g mm²]	978467
Schienengröße [mm] 35x16	Schienengröße [mm]	35x16

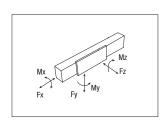
^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Tab. 40

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCR 140	11.482.500	8.919.600	20.402.100

Tab. 41

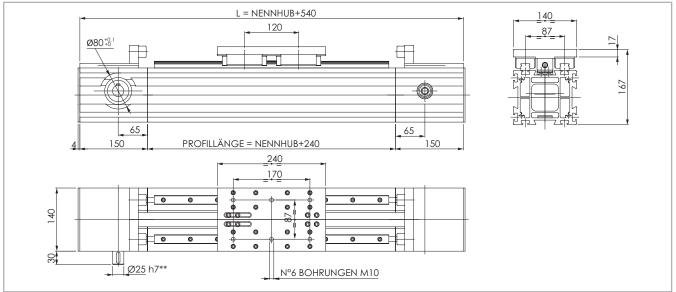

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 140	32 AT 10	32	0,185

Tab. 42

Riemenlänge (mm) = 2 x L- 180



TCR 140 - Tragzahlen

Тур	F _x [N]		F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 140	3187	2170	6000	23405	4000	594	400	600

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 140

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt
** Eine Antriebswelle ist die einzige verfügbare Option

Abb. 23

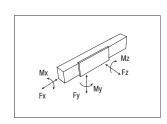
Technische Daten

	Тур
	TCS 140
Maximale Hublänge [mm]	9760
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	32 AT 10
Typ Zahnriemenscheibe	Z 32
Riemenscheibendurchmesser [mm]	101,86
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	320
Gewicht des Laufwagens [kg]	4,2
Gewicht Hub Null [kg]	18
Gewicht je 100 mm Hub [kg]	1,9
Losbrechmoment [Nm]	3,5
Riemenscheiben-Trägheitsmoment [g mm²]	978467
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 44

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[mm⁴]
TCS 140	11.482.500	8.919.600	20.402.100

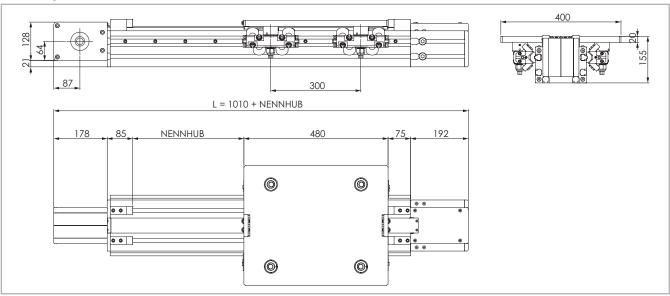

Tab. 45

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCS 140	32 AT 10	32	0,185
			Tab. 46

Riemenlänge (mm) = $2 \times L - 100$



TCS 140 - Tragzahlen

Тур	F [1	: X V]	F [N	; ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 140	3187	2170	153600	70798	153600	6682	9216	9216

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 24

Technische Daten

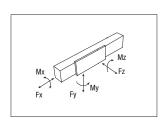
	Тур
	TCR 170
Maximale Hublänge [mm]	11360
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	50 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	17,2
Gewicht Hub Null [kg]	51,1
Gewicht je 100 mm Hub [kg]	2,4
Losbrechmoment [Nm]	4,2
Riemenscheiben-Trägheitsmoment [g mm²]	7574717
Schienengröße [mm]	35x16
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 48

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCR 170	19.734.283	9.835.781	29.570.064

Tab. 49

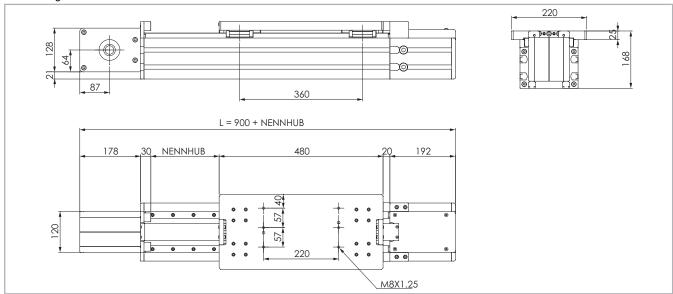

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 170	50 AT 10 HP	50	0,290
			T : =0

Tab. 50

Riemenlänge (mm) = $2 \times L - 250$



TCR 170 - Tragzahlen

Тур	F [t	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 170	4980	3300	14142	65928	14142	1202	2121	2121

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 25

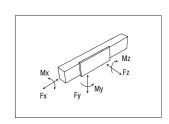
Technische Daten

	Тур
	TCS 170
Maximale Hublänge [mm]	11470
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	50 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	8,6
Gewicht Hub Null [kg]	34,2
Gewicht je 100 mm Hub [kg]	2,2
Losbrechmoment [Nm]	4,8
Riemenscheiben-Trägheitsmoment [g mm²]	7574717
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 52

 $^{^{\}star}$ 1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCS 170	19.734.283	9.835.781	29.570.064

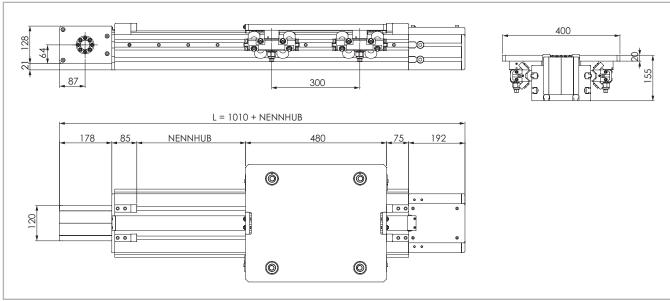

Tab. 53

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCS 170	50 AT 10 HP	50	0,290
			Tab. 54

Riemenlänge (mm) = $2 \times L - 250$



TCS 170 - Tragzahlen

Тур	F [1	: X V]	F [N	; ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 170	4980	3300	153600	70798	153600	7680	27648	27648

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb.26

Technische Daten

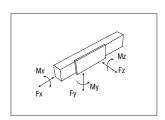
	Тур
	TCR 200
Maximale Hublänge [mm]	11360
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	50 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	17,3
Gewicht Hub Null [kg]	54,5
Gewicht je 100 mm Hub [kg]	2,7
Losbrechmoment [Nm]	4,2
Riemenscheiben-Trägheitsmoment [g mm²]	7574717
Schienengröße [mm]	35x16
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 56

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCR 200	32.697.979	12.893.004	45.860.983

Tab. 57

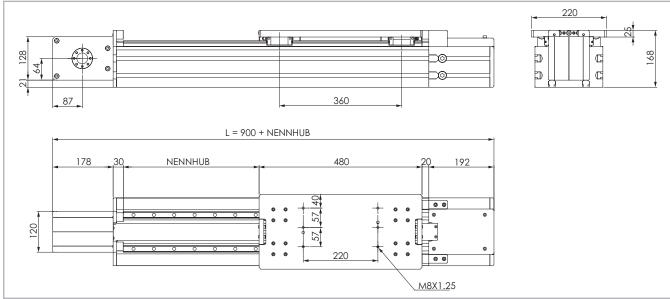

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]	
TCR 200	50 AT 10 HP	50	0,290	

Tab. 58

Riemenlänge (mm) = $2 \times L - 250$



TCR 200 - Tragzahlen

Тур	F [I	: X N]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 200	4980	3300	14142	65928	14142	1414	2121	2121

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 27

Technische Daten

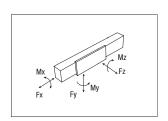
	Тур
	TCS 200
Maximale Hublänge [mm]	11470
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	50 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	8,6
Gewicht Hub Null [kg]	39,7
Gewicht je 100 mm Hub [kg]	2,6
Losbrechmoment [Nm]	4,8
Riemenscheiben-Trägheitsmoment [g mm²]	7574717
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 60

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[mm⁴]
TCS 200	32.697.979	12.893.004	45.860.983

Tab. 61

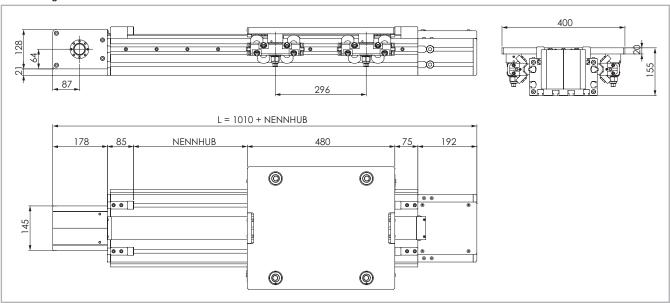

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]
TCS 200	50 AT 10 HP	50	0,290

Tab. 62

Riemenlänge (mm) = 2 X L - 250



TCS 200 - Tragzahlen

Тур	F [I	: X N]	F [N	; ď]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 200	4980	3300	153600	70798	153600	7680	27648	27648

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 28

Technische Daten

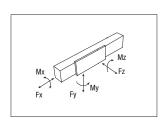
	Тур
	TCR 220
Maximale Hublänge [mm]	11360
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	75 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	17,3
Gewicht Hub Null [kg]	60,1
Gewicht je 100 mm Hub [kg]	3,7
Losbrechmoment [Nm]	5,8
Riemenscheiben-Trägheitsmoment [g mm²]	9829829
Schienengröße [mm]	35x16

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

	[mm ⁴]	[mm⁴]	[mm ⁴]
TCR 220	46.248.422	15.591.381	61.839.803
			Tab. 6

Flächenträgheitsmomente der Aluminiumprofile

Antriebsriemen

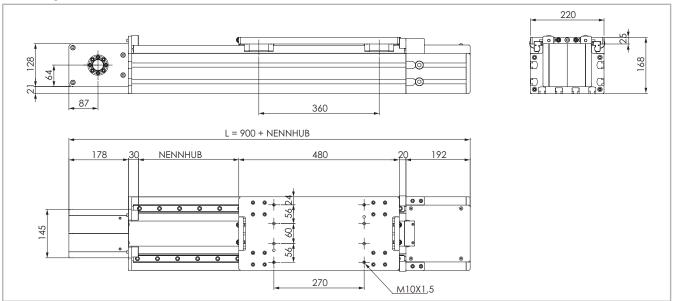

Тур

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 220	75 AT 10 HP	75	0,435

Tab. 66

Riemenlänge (mm) = $2 \times L - 250$


TCR 220 - Tragzahlen

Тур	F [t	: X N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 220	7470	4950	14.142	65928	14142	1556	2093	2093

Tab. 64

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 29

Technische Daten

	Тур
	TCS 220
Maximale Hublänge [mm]	11470
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	75 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	9,5
Gewicht Hub Null [kg]	49,3
Gewicht je 100 mm Hub [kg]	3,2
Losbrechmoment [Nm]	6,9
Riemenscheiben-Trägheitsmoment [g mm²]	9829829
Schienengröße [mm]	25
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 68

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	I [mm⁴]
TCS 220	46.248.422	15.591.381	61.839.803
			Tab. 69

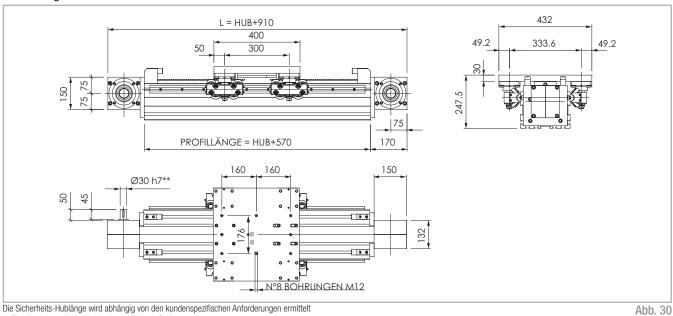
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCS 220	75 AT 10 HP	75	0,435

Tab. 70

Riemenlänge (mm) = $2 \times L - 250$



TCS 220 - Tragzahlen

Тур	F [1	: X N]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 220	7470	4950	258800	116833	258800	19410	46584	46584

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 230

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt ** Eine Antriebswelle ist die einzige verfügbare Option

Technische Daten

	Тур
	TCR 230
Maximale Hublänge [mm]	11430
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	75 AT 10
Typ Zahnriemenscheibe	Z 40
Riemenscheibendurchmesser [mm]	127,32
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	400
Gewicht des Laufwagens [kg]	23,0
Gewicht Hub Null [kg]	60
Gewicht je 100 mm Hub [kg]	3,3
Losbrechmoment [Nm]	10,5
Riemenscheiben-Trägheitsmoment [g mm²]	12020635
Schienengröße [mm]	35x16

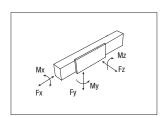
^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Tab. 72

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCR 230	65.009.000	37.783.000	102.792.000

Tab. 73

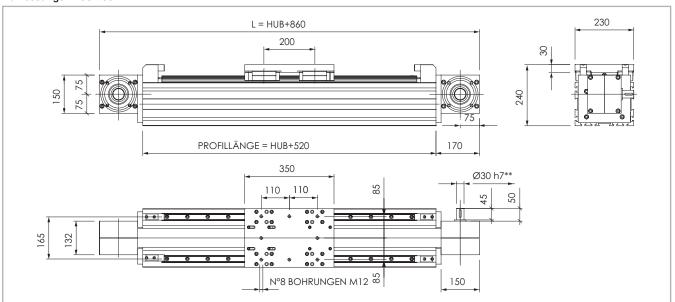

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 230	75 AT 10	75	0,435

Tab. 74

Riemenlänge (mm) = $2 \times L - 100$



TCR 230 - Tragzahlen

Тур	F [t	: X V]	F [t	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 230	7470	5220	14142	65928	14142	1626	2121	2121

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 230

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt ** Eine Antriebswelle ist die einzige verfügbare Option

Technische Daten

	Тур
	TCS 230
Maximale Hublänge [mm]	11480
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	75 AT 10
Typ Zahnriemenscheibe	Z 40
Riemenscheibendurchmesser [mm]	127,32
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	400
Gewicht des Laufwagens [kg]	10,5
Gewicht Hub Null [kg]	43,5
Gewicht je 100 mm Hub [kg]	3,7
Losbrechmoment [Nm]	11,5
Riemenscheiben-Trägheitsmoment [g mm²]	12020635
Schienengröße [mm]	30
1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 7

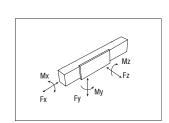
^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l [mm⁴]
TCS 230	65.009.000	37.783.000	102.792.000

Tab. 77

Abb.31

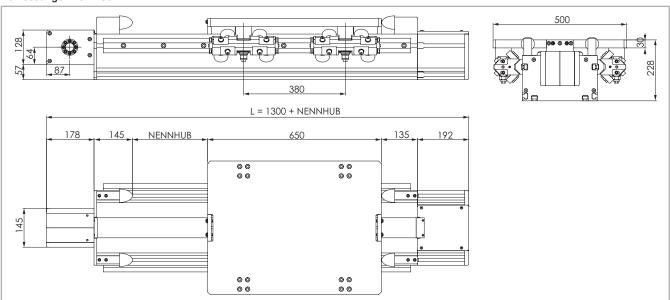

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCS 230	75 AT 10	75	0,435

Tab. 48

Riemenlänge (mm) = 2 X L - 60



TCS 230 - Tragzahlen

Тур	F [!	: × V]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 230	7470	5220	355200	172074	355200	29304	35520	35520

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 280

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 32

Technische Daten

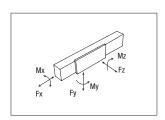
	Тур
	TCR 280
Maximale Hublänge [mm]	11070
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	75 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	47,3
Gewicht Hub Null [kg]	126,1
Gewicht je 100 mm Hub [kg]	4,8
Losbrechmoment [Nm]	8,5
Riemenscheiben-Trägheitsmoment [g mm²]	9829829
Schienengröße [mm]	55x25
1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 8

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
TCR 280	126.456.500	48.292.512	174.749.312

Tab. 81

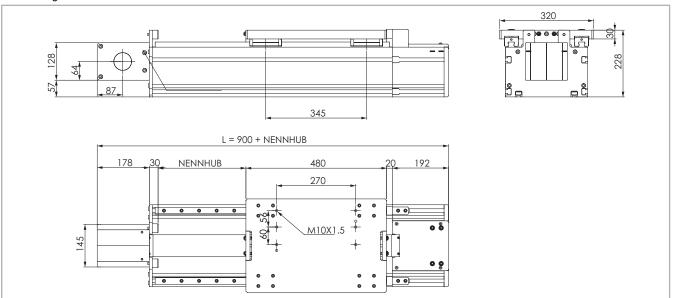

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 280	75 AT 10 HP	75	0,435

Tab. 82

Riemenlänge (mm) = 2 x L - 230



TCR 280 - Tragzahlen

Тур	F [t	: X N]	F [!	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCR 280	7470	4950	24042	112593	24042	3366	4568	4568

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 280

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 33

Technische Daten

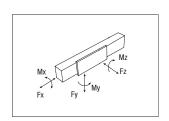
	Тур
	TCS 280
Maximale Hublänge [mm]	11470
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	75 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	18
Gewicht Hub Null [kg]	65,1
Gewicht je 100 mm Hub [kg]	4,6
Losbrechmoment [Nm]	8,3
Riemenscheiben-Trägheitsmoment [g mm²]	9829829
Schienengröße [mm]	25
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 84

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[mm⁴]	[mm⁴]	[mm⁴]
TCS 280	126.456.800	48.292.512	174.749.312

Tab. 85

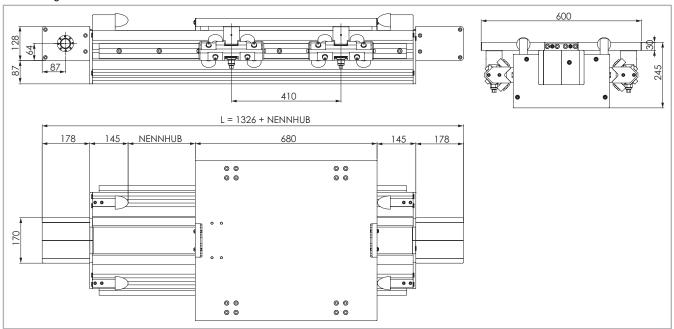

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riemen-	Riemenbreite	Gewicht
	typ	[mm]	[kg/m]
TCS 280	75 AT 10 HP	75	0,435

Tab. 86

Riemenlänge (mm) = 2 X L - 230



TCS 280 - Tragzahlen

Тур	F [1	: X V]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 280	7470	4950	258800	116833	258800	31056	46584	46584

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCR 230

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 34

Technische Daten

	Тур
	TCR 360
Maximale Hublänge [mm]	11030
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	100 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	56,3
Gewicht Hub Null [kg]	163
Gewicht je 100 mm Hub [kg]	6,8
Losbrechmoment [Nm]	8,5
Riemenscheiben-Trägheitsmoment [g mm²]	14085272
Schienengröße [mm]	55x25

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	ly [mm⁴]	l [mm⁴]
TCR 360	317.212.806	103.285.258	420.498.064
			Tab. 89

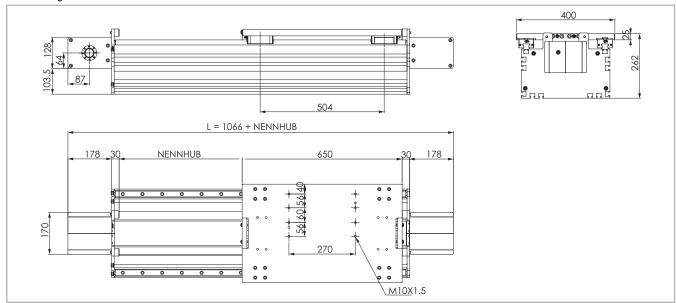
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
TCR 360	100 AT 10 HP	100	0,58

Tab. 90

Riemenlänge (mm) =


TCR 360 - Tragzahlen

Тур	[[= N N	[= Nj	F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TCR 360	9960	6600	24042	112593	24042	4327	4929	4929

Tab. 88

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Abmessungen TCS 360

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 35

Technische Daten

	Тур
	TCS 360
Maximale Hublänge [mm]	11290
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	5
Maximale Beschleunigung [m/s²]	50
Zahnriemen-Typ	100 AT 10 HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	25,2
Gewicht Hub Null [kg]	104,6
Gewicht je 100 mm Hub [kg]	6,9
Losbrechmoment [Nm]	8,3
Riemenscheiben-Trägheitsmoment [g mm²]	14085272
Schienengröße [mm]	30
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 92

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l x [mm⁴]	l _y [mm⁴]	l [mm⁴]
TCS 360	317.212.806	103.285.258	420.498.064
			Tab. 93

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

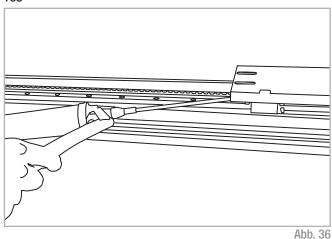
Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]		
TCS 360	100 AT 10 HP	100	0,580		
			Tab. 94		

Riemenlänge (mm) = 2 X L - 260

TCS 360 - Tragzahlen

Тур	F _x [N]		F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TCS 360	9960	6600	266400	142231	266400	42624	61272	61272

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


Zapfen

TCS-Lineareinheiten mit Kugellagerführung

Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden. Das Schmierintervall

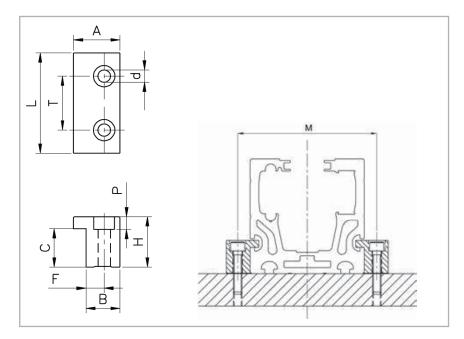
beträgt 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit langer Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

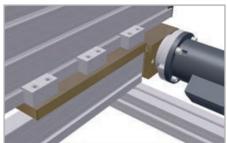
TCS

Nachschmiermenge (je Schmieranschluss):

Тур	Menge [cm³] pro Schmiernippel
TCS 140	1,4
TCS 170	1,4
TCS 200	1,4
TCS 220	2,0
TCS 230	4,2
TCS 280	2,0
TCS 360	3,2

Tab. 96


- Adapter der Fettpresse auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.


TCR-Lineareinheiten mit Kugellagerführung

Die Rollenschlitten sind mit einer Dauerschmierung versehen, die bei sachgemäßer Anwendung die Notwendigkeit weiterer Wartungsarbeiten vermeidet, auch unter Berücksichtigung der durchschnittlichen Lebensdauer aller Handlingsysteme Bei Verwendung in Anlagen mit einer hohen Anzahl von täglichen Zyklen oder in einer Umgebung mit erheblichen Verunreinigungen, prüfen Sie bitte mit unserer technischen Abteilung die Notwendigkeit einer Schmierung, von Dichtungen und Zusatzbehältern. Verwenden Sie zur Reinigung der Rollen oder Rollenschlitten bitte keine Lösungsmittel, da dadurch die während des Zusammenbaus auf die Rollenelemente aufgebrachte Schmierschicht unbeabsichtigt entfernt werden kann. Verwenden Sie ein Lithiumseifenfett gemäß DIN 51825 - K3N.

Wenn richtig zusammengebaut, benötigen die Führungsschienen keine Schmierung. Diese kann negative Folgen haben und Verunreinigungen verstärken. Wenn auf den Führungsschienen bzw. den rollenden Teilen Oberflächenfehler wie Lochfraß oder Erosion auftreten, kann das ein Zeichen für übermäßige Belastung sein. In diesem Fall müssen alle Verschleißteile ausgetauscht und die Lastgeometrie und die Ausrichtung überprüft werden.

Zubehör

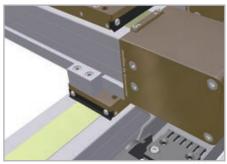
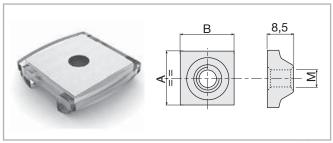


Abb.37

Material: Aluminiumlegierung 6082

Тур	bxh	А	L	Т	d	Н	Р	C	F	В	M	Bestellcode
TCR/TCS 170	120x170										198	
TCR/TCS 200	120x200	30	90	50	11	40	11	28.3	14	25	228	415.0762
TCR/TCS 220	120x220										248	
TCR/TCS 280	170x280	30	90	50	11	20	11	11.3	14	25	308	415.0763
TCR/TCS 280 Vert.	280x170	30	90	50	11	20	11	13.5	14	25	198	915.1174


Tab. 97

Halbrunde Gewindeeinsätze mit Feder

Gewindeplatte für Basisprofil 45, 50 und 60. Material: Verzinkter Stahl .

Geeignet für die Baureihen:

TC 170-180-200-220-360

	АхВ				
Gewinde	18x18	20x20			
M4	209.0031	209.0023			
M5	209.0032	209.0019			
M6	209.033	209.1202			
M8	209.0034	209.0467			

Tab. 98

Abb. 38

Kunststoffverbundfeder für die vertikale Positionierung des Einsatzes.

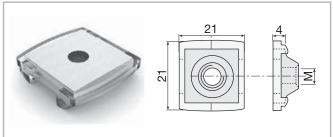


Abb. 39

Feder	Bestellcode
Für alle Einsätze geeignet 18x18	101.0732

Tab. 99

Sensorhalterungen

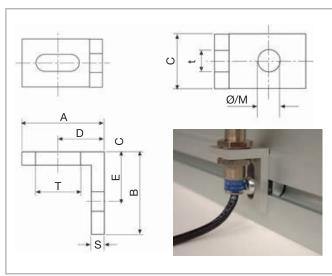
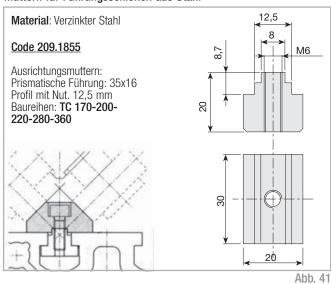
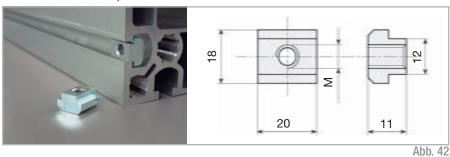


Abb. 40

Material: Natürlich eloxierte, nicht korrosive Legierung


Gewinde Bestelle										
Α	В	С	D	E	S	Txt	Ø/M	Ø	M	
45	45	20	25	25	5	20X6,5	6	A30-76	A 30-86	
35	25	20	19	15	5	20X6,5	4	A30-54	A30-64	
35	25	20	19	15	5	20X6,5	5	A30-55	A30-65	
35	25	20	19	15	5	20X6,5	6	A30-56	A30-66	
25	25	15	14	15	4	13,5X5,5	3	B30-53	B30-63	
25	25	14	14	15	4	13,5X5,5	4	B30-54	B30-64	
25	25	15	14	15	4	13,5X5,5	5	B30-55	B30-65	
25	25	15	14	15	4	13,5X5,5	6	B30-56	B30-66	
Für all	e Mod	ule ge	eignet						Tab. 100	

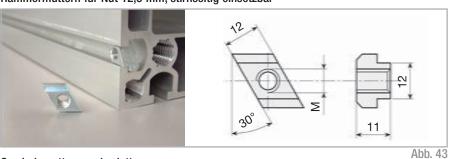
M = Gewindeausführung


 $\mathbf{Ø} = \mathsf{Ausf\"{u}hrung}$ ohne Gewinde

Ausrichtungsmuttern

Muttern für Führungsschienen aus Stahl

T-Nutenstein für Nut 12,5 mm

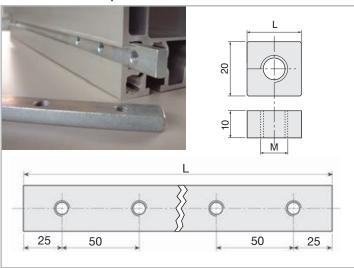


Material: Verzinkter Stahl. Geeignet für die Baureihen:**TC 170-200-280-360**

Gewinde	Bestellcode
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Tab. 101

Hammermuttern für Nut 12,5 mm, stirnseitig einsetzbar



Material: Verzinkter Stahl. Geeignet für die Baureihen: TC 170-200-280-360

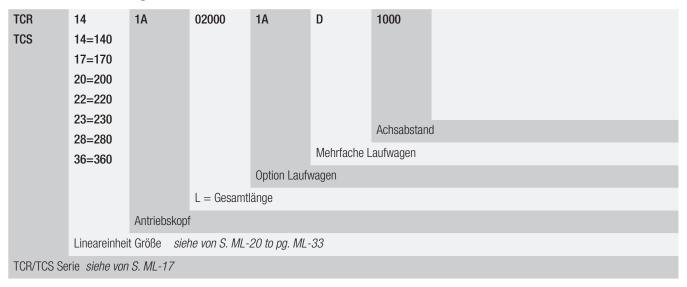
Gewinde	Bestellcode
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

3 Tab. 102

Gewindemuttern und -platten

In Profilen mit 12,5 mm-Nuten können sechskantschrauben M12 (SW19) als Hammerschraube verwendet werden.

Material: Verzinkter Stahl. Geeignet für die Baureihen:


TC 170-200-220-280-360

Gewinde	n-Bohrungen	L	Bestellcode
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

* Loch-Mittenabstand: 50 mm.

Bestellschlüssel / ~

Bestellbezeichnung für Lineareinheiten TCR/TCS Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

ZCR/ZCH Serie

Beschreibung ZCR/ZCH

Abb. 45

Die Lineareinheiten der Baureihe ZCR/ZCH wurden entwickelt, um vertikale Bewegungen bei Gantry-Bauweise zu ermöglichen oder für Anwendungen, bei denen das Aluminiumprofil beweglich ist und der Läufer fest steht. Die Baureihe umfasst Lineareinheiten mit selbsttragenden Aluminium-Strangpressprofilen, die in drei Baugrößen von 60 bis 120 mm erhältlich sind. Es handelt sich um ein biegesteifes System, das ideal zur Schaffung einer Z-Achse durch Verwendung einer linearen Führungsschiene geeignet ist. Darüber hinaus wurde die Baureihe ZCR/ZCH so entworfen und konfiguriert, dass sie einfach mit der R-SMART, TCR/TCS Serie und ROBOT Serie Verbunden werden kann.

ZCR

Verfügt über ein doppeltes "Prismatic Rail"-System.

ZCH

Verfügt über ein Doppelschienensystem mit vier Führungswagen mit Kugelumlaufführungen.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe ZCR/ZCH verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemescheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der ZCR/ZCH Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der ZCR/ZCH Serie besteht aus eloxiertem Aluminium.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15
							T 1 404

Tab. 104

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	70	23,8	200	880-900	33	600-655

Tab. 105

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
$\frac{N}{mm^2}$	N —— mm²	%	_
250	200	10	75

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

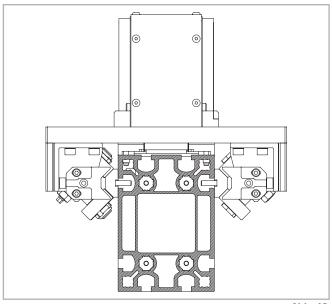
ZCR mit Prismatic Rail:

Die Schienen des Systems "Prismatic Rail" bestehen aus speziell behandeltem Kohlenstoffstahl und sind mit lebensdauergeschmierten Lagern ausgestattet. Dank dieser Lösung eignet sich ZCR speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung.

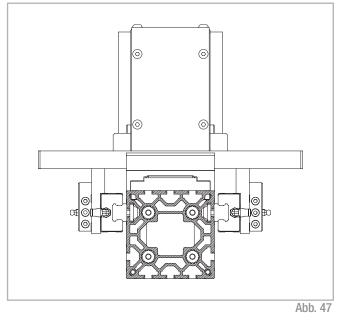
- Die prismatischen Schienen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit einer Vorspannung versehen, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Gehärtete und geschliffene Führungsschienen aus Stahl.
- Die Läufer sind mit Filzelementen zur Selbstschmierung ausgestattet.

ZCH mit Kugelumlaufführungen:

- Die Kugelumlaufführungen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit vorgespannten Kugellagerblöcken ausgestattet, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet.
 - Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- Die Blöcke verfügen über Dichtungen auf beiden Seiten.

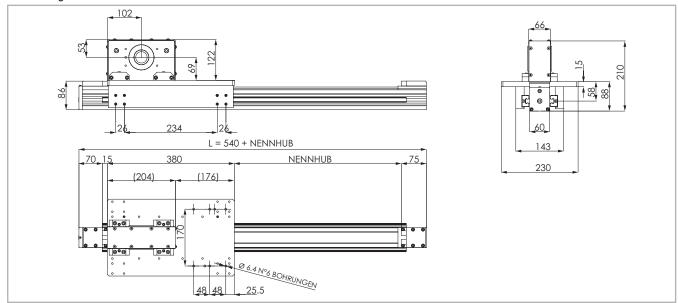

Merkmale des beschriebenen linearen Bewegungssystems:

- Geeignet f
 ür schmutzige Umgebungen
- Hohe Geschwindigkeit und Beschleunigung
- Wartungsarm
- Hohe Tragzahlen
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung


Merkmale des beschriebenen linearen Bewegungssystems:

- Hohe zulässige Biegemomente
- Hohe Bewegungsgenauigkeit
- Hohe Geschwindigkeit und Beschleunigung
- Hohe Tragzahlen
- Hohe Steifigkeit
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung

ZCR Schnitt



ZCH Schnitt

ZCH 60

Abmessungen ZCH 60

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb.48

Technische Daten

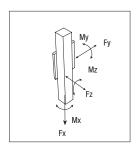
	Тур
	ZCH 60
Maximale Hublänge [mm]	1500
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	40
Zahnriemen-Typ	32 AT 10 HF
Typ Zahnriemenscheibe	Z 22
Riemenscheibendurchmesser [mm]	70,03
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	220
Gewicht des Laufwagens [kg]	11,1
Gewicht Hub Null [kg]	15,8
Gewicht je 100 mm Hub [kg]	0,8
Losbrechmoment [Nm]	1,8
Schienengröße [mm]	15
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 107

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
ZCH 60	433.914	426.003	859.918

Tab. 108

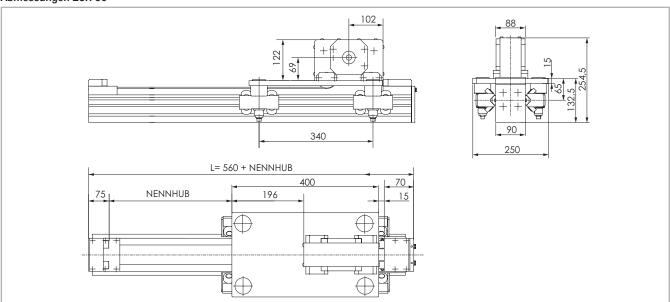

Tab. 109

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCH 60	32 AT 10 HF	32	0,185

Riemenlänge (mm) = L + 190


ZCH 60 - Tragzahlen

Тур	F [1	: X V]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 60	2656	1760	61120	39780	61120	2216	7946	7946

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCR 90

Abmessungen ZCR 90

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 49

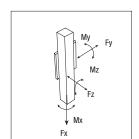
Technische Daten

	Тур
	ZCR 90
Maximale Hublänge [mm]	2000
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	32 AT 10 HF
Typ Zahnriemenscheibe	Z 22
Riemenscheibendurchmesser [mm]	70,03
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	220
Gewicht des Laufwagens [kg]	11,6
Gewicht Hub Null [kg]	19,4
Gewicht je 100 mm Hub [kg]	1
Losbrechmoment [Nm]	1,8
Schienengröße [mm]	28,6x11

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[mm⁴]	[mm⁴]	[mm⁴]
ZCR 90	1.969.731	1.950.080	3.919.811


Tab. 112

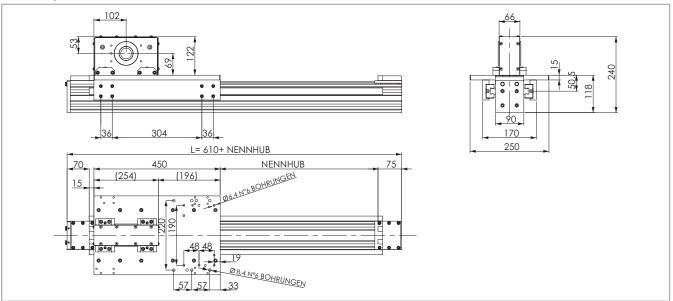
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCR 90	32 AT 10 HF	32	0,185
			Tab. 113

Riemenlänge (mm) = L + 190

ZCR 90 - Tragzahlen


Тур	F [t	: X V]	F [1	= N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCR 90	2656	1760	7637	28286	7637	344	1298	1298

Tab. 111

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCH 90

Abmessungen ZCH 90

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 50

Technische Daten

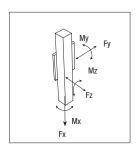
	Тур
	ZCH 90
Maximale Hublänge [mm]	2000
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	20
Zahnriemen-Typ	32 AT 10 HF
Typ Zahnriemenscheibe	Z 22
Riemenscheibendurchmesser [mm]	70,03
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	220
Gewicht des Laufwagens [kg]	12,8
Gewicht Hub Null [kg]	20,6
Gewicht je 100 mm Hub [kg]	1,3
Losbrechmoment [Nm]	1,8
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 115

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	I
	[mm⁴]	[mm⁴]	[mm⁴]
ZCH 90	1.969.731	1.950.080	3.919.811

Tab. 116

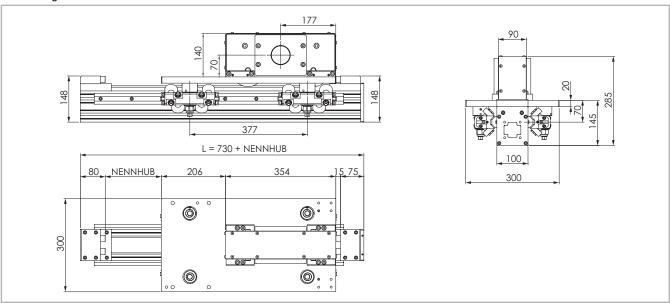

Tab. 117

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemen- breite [mm]	Gewicht [kg/m]
ZCH 90	32 AT 10 HF	32	0,185

Riemenlänge (mm) = L + 190


ZCH 90 - Tragzahlen

Тур	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 90	2656	1760	102520	73274	102520	5510	14865	14865

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCR 100

Abmessungen ZCR 100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 51

Technische Daten

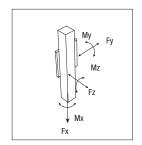
	Тур	
	ZCR 100	
Maximale Hublänge [mm]	2100	
Max. Wiederholgenauigkeit [mm]*1	± 0,1	
Maximale Geschwindigkeit [m/s]	4	
Maximale Beschleunigung [m/s²]	25	
Zahnriemen-Typ	50 AT 10 HPF	
Typ Zahnriemenscheibe	Z 30	
Riemenscheibendurchmesser [mm]	95,49	
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300	
Gewicht des Laufwagens [kg]	27,6	
Gewicht Hub Null [kg]	41	
Gewicht je 100 mm Hub [kg]	1,3	
Losbrechmoment [Nm]	4,5	
Schienengröße [mm]	35x16	

 $^{^{\}star}$ 1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y		
	[mm⁴]	[mm⁴]	[mm⁴]	
ZCR 100	3.637.190	3.457.193	7.094.383	

Tab. 120


Antriebsriemen

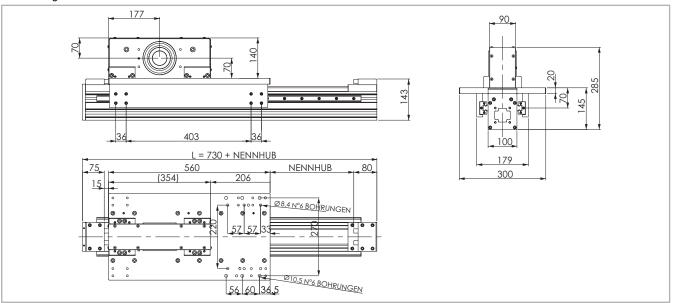
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCR 100	50 AT 10 HPF	50	0,290

Riemenlänge (mm) = L + 250

Tab. 121

ZCR 100 - Tragzahlen


Тур	F _x [N]		F [N]		F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 100	4980	3480	14142	65298	14142	707	2666	2666

Tab. 119

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCH 100

Abmessungen ZCH 100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

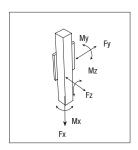
Abb. 52

Technische Daten

	Тур
	ZCH 100
Maximale Hublänge [mm]	2100
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	50 AT 10 HPF
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	25,1
Gewicht Hub Null [kg]	37,4
Gewicht je 100 mm Hub [kg]	1,5
Losbrechmoment [Nm]	4,5
Schienengröße [mm]	20
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 123

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l [mm⁴]	l _y [mm⁴]	Ι [mm⁴]
ZCH 100	3.637.190	3.457.193	7.094.383
			Tab. 124

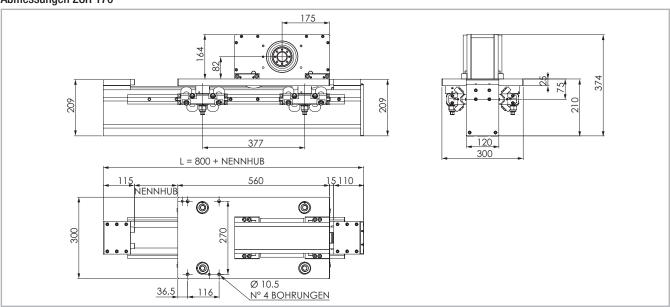
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCH 100	50 AT 10 HPF	50	0,290

Riemenlänge (mm) = L + 250

ZCH 100 - Tragzahlen


Тур	F [I	: X N]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 100	4980	3480	102520	73274	102520	6023	22503	22503

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 126

ZCR 170

Abmessungen ZCR 170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

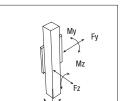
Abb. 53

Technische Daten

	Тур
	ZCR 170
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	75 AT 10 HPF
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	32,5
Gewicht Hub Null [kg]	55,4
Gewicht je 100 mm Hub [kg]	2,6
Losbrechmoment [Nm]	7,8
Schienengröße [mm]	35x16

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l [mm⁴]	[mm ⁴] [mm ⁴]	
ZCR 170	19.734.283	9.835.781	29.570.064
			Tab. 128

Antriebsriemen

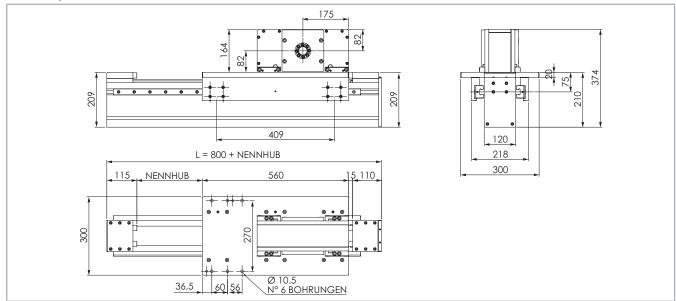
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCR 170	75 AT 10 HPF	75	0,435

Riemenlänge (mm) = L + 280

Tab. 129

ZCR 170 - Tragzahlen


Тур	F [I	= × N]	F [!	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 170	7470	5220	14142	65298	14142	849	2666	2666

Tab. 127

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCH 170

Abmessungen ZCH 170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb.54

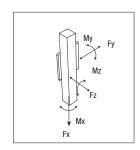
Technische Daten

	Тур
	ZCH 170
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	75 AT 10 HPF
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	34,4
Gewicht Hub Null [kg]	53,7
Gewicht je 100 mm Hub [kg]	2,5
Losbrechmoment [Nm]	7,8
Schienengröße [mm]	25
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 130

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[mm⁴]
ZCH 170	19.734.283	9.835.781	29.570.064


Tab. 131

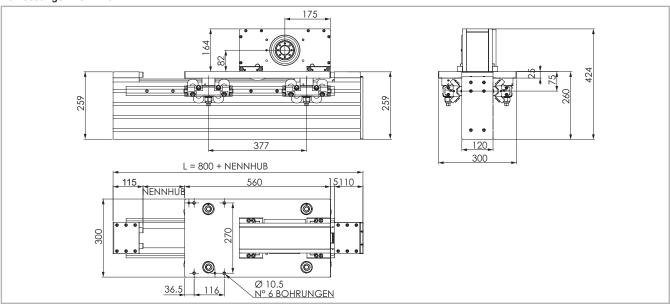
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCH 170	75 AT 10 HPF	75	0,435

Riemenlänge (mm) = L + 280

ZCH 170 - Tragzahlen


Тур	F [t	: X V]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCH 170	7470	5220	174480	124770	174480	12388	35681	35681

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

Tab. 133

ZCR 220

Abmessungen ZCR 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 55

Technische Daten

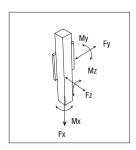
	Тур
	ZCR 220
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	75 AT 10 HPF
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	32,5
Gewicht Hub Null [kg]	61
Gewicht je 100 mm Hub [kg]	3,2
Losbrechmoment [Nm]	7,8
Schienengröße [mm]	35x16

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]
ZCR 220	46.248.422	15.591.381	61.839.803

Tab. 135


Antriebsriemen

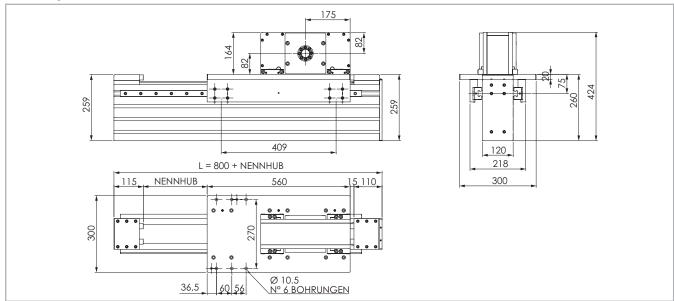
Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCR 220	75 AT 10 HPF	75	0,435
			T 1 400

Tab. 136

Riemenlänge (mm) = L + 280

ZCR 220 - Tragzahlen


Тур	F [!	: Nj	F [1	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZCR 220	7470	5220	14142	65298	14142	849	2666	2666

Tab. 134

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

ZCH 220

Abmessungen ZCH 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

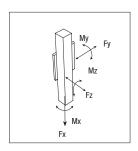
Abb.56

Technische Daten

	Тур
	ZCH 220
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	75 AT 10 HPF
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	34,4
Gewicht Hub Null [kg]	60,7
Gewicht je 100 mm Hub [kg]	3,5
Losbrechmoment [Nm]	7,8
Schienengröße [mm]	25
*1) Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart	Tab. 138

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l mm⁴]	l _y [mm⁴]	lր [mm⁴]
ZCH 220	46.248.422	15.591.381	61.839.803
			Tab. 139

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

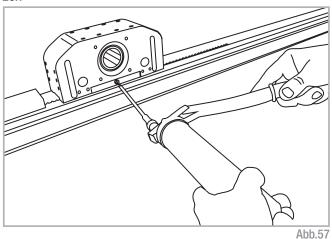
Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZCH 220	75 AT 10 HPF	75	0,435
			Tab. 140

Riemenlänge (mm) = L + 280

ZCH 220 - Tragzahlen

Тур	F [1	: X V]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
ZCH 220	7470	5220	174480	124770	174480	12388	35681	35681

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


Zapfen

ZCH-Lineareinheiten mit Kugellagerführung

Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden. Das Schmierintervall beträgt 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert).

Für Anwendungen mit langer Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

ZCH

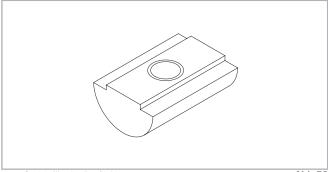
Nachschmiermenge (je Schmieranschluss):

Тур	Menge [cm³] pro Schmiernippel
ZCH 60	0,2
ZCH 90	0,5
ZCH 100	0,5
ZCH 170	0,6
ZCH 220	0,6

Tab. 142

- Adapter der Fettpresse auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

ZCR-Lineareinheiten mit Kugellagerführung


Die Rollenschlitten sind mit einer Dauerschmierung versehen, die bei sachgemäßer Anwendung die Notwendigkeit weiterer Wartungsarbeiten vermeidet, auch unter Berücksichtigung der durchschnittlichen Lebensdauer aller Handlingsysteme Bei Verwendung in Anlagen mit einer hohen Anzahl von täglichen Zyklen oder in einer Umgebung mit erheblichen Verunreinigungen, prüfen Sie bitte mit unserer technischen Abteilung die Notwendigkeit einer Schmierung, von Dichtungen und Zusatzbehältern. Verwenden Sie zur Reinigung der Rollen oder Rollenschlitten bitte keine Lösungsmittel, da dadurch die während des Zusammenbaus auf die Rollenelemente aufgebrachte Schmierschicht unbeabsichtigt entfernt werden kann. Verwenden Sie ein Lithiumseifenfett gemäß DIN 51825 - K3N.

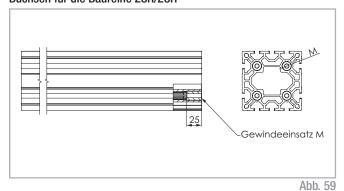
Wenn richtig zusammengebaut, benötigen die Führungsschienen keine Schmierung. Diese kann negative Folgen haben und Verunreinigungen verstärken. Wenn auf den Führungsschienen bzw. den rollenden Teilen Oberflächenfehler wie Lochfraß oder Erosion auftreten, kann das ein Zeichen für übermäßige Belastung sein. In diesem Fall müssen alle Verschleißteile ausgetauscht und die Lastgeometrie und die Ausrichtung überprüft werden.

Zubehör

Zur Installation von Zubehörteilen auf dem Aluminiumprofil der Baureihe ZCH empfehlen wir die unten aufgeführten T-Muttern.

T-Nutenstein

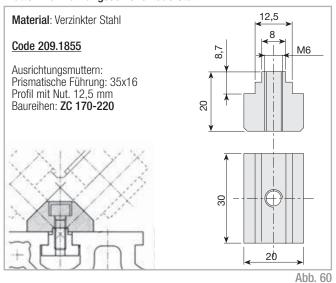
Aus Stahl, für die Profil-Nuten.

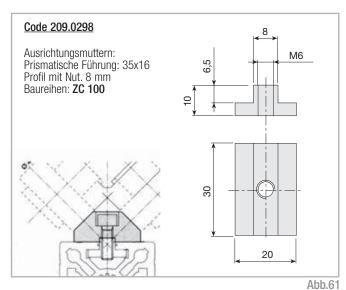

Abb.58

Einheit (mm)

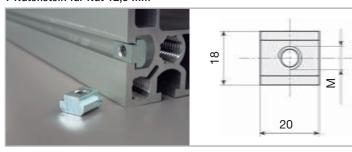
	Bohrung	L	Bestellcode
ZCH 60	M4	8	1001046
ZCH 90	M5	10	1000627
ZCH 100	M6	13	1000043
ZCR 90	M4	8	1000627
ZCR 100	M5	10	1000043

Tab. 143


Buchsen für die Baureihe ZCR/ZCH

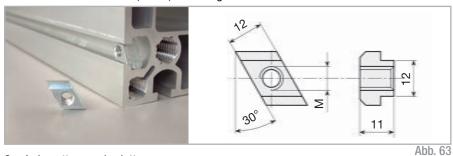


	Gewindeeinsatz Nb. x M				
ZCH 60	1 x M6	1 x M8	1 x M10		
ZCH 90	4 x M6	4 x M8	4 x M10		
ZCH 100	4 x M6	4 x M8	4 x M10		
ZCH 170		4 x M8	4 x M10	4 x M12	
ZCH 220		4 x M8	4 x M10	4 x M12	


Ausrichtungsmuttern

Muttern für Führungsschienen aus Stahl

T-Nutenstein für Nut 12,5 mm

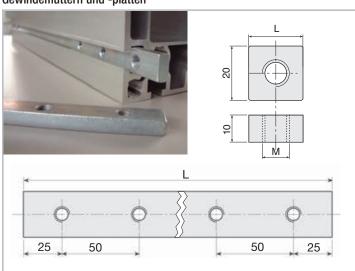


Material: Verzinkter Stahl. Geeignet für die Baureihen: **ZC 170-220**

Bestellcode
215.1768
215.1769
215.1770
215.2124

Tab. 145

Hammermuttern für Nut 12,5 mm, stirnseitig einsetzbar



Material: Verzinkter Stahl. Geeignet für die Baureihen: **ZC 170-220**

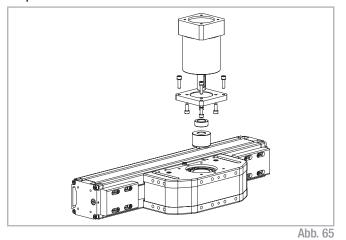
Bestellcode
215.1771
215.1772
215.1773
215.2125

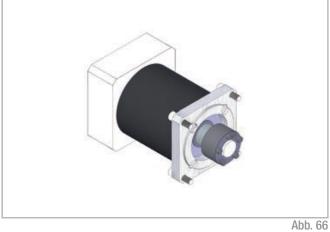
Tab. 146

Gewindemuttern und -platten

In Profilen mit 12,5 mm-Nuten können sechskantschrauben M12 (CH19) als Hammermuttern verwendet werden.

Material: Verzinkter Stahl. Geeignet für die Baureihen: **ZC** 170-220


Gewinde	n-Bohrungen		Bestellcode
C.O.T.	50go		200101100110
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2*	80	209.1776
M10	3*	150	209.1777
M10	4*	200	209.1778
M10	5*	250	209.1779
M10	6*	300	209.1780
M10	7*	350	209.1781

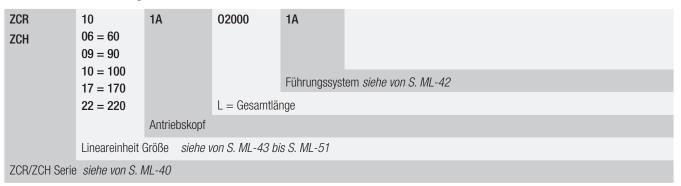

Abb.64 * Loch-Mittenabstand: 50 mm.

11

Abb. 62

Adapterflansch für die Getriebeeinheit

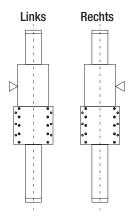
Das Montagekit umfasst: Spannring, Adapterplatte und Befestigungsteile


Typ der Einheit	Typ des Getriebes (nicht enthalten)	Bestellcode Montagekit
	MP080	4001915
ZCH 60/90	CP080	4001970
	PSF221	4001917
	LP120; PE5; LC120	4001856
	SP100; P5	4001857
	PSF321	4001858
ZCH 100	PSF521	4001859
	EP120TT	4001860
	MP105	4001861
	MP080	4001951

Tab. 148

Für weitere Getriebetypen wenden Sie sich bitte an unsere Anwendungstechnik

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten ZCR/ZCH

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

ZMCH Serie / ~

Beschreibung ZMCH

Abb. 67

ZMCH

Die Lineareinheiten der Baureihe ZMCH wurden entwickelt, um vertikale Bewegungen bei Gantry-Bauweise zu ermöglichen oder für Anwendungen, bei denen das Aluminiumprofil beweglich ist und der Läufer fest steht.

Darüber hinaus wurde die Baureihe ZMCH so entworfen und konfiguriert, dass sie einfach mit der R-SMART, TCR/TCS Serie und ROBOT Serie verbunden werden kann.

Aufbau des Systems

Strangpressprofil

Die Strangpressprofile aus eloxiertem Aluminium, die für die Gehäuse der Lineareinheiten der Rollon-Baureihe ZMCH verwendet werden, wurden in Zusammenarbeit mit einem auf diesem Gebiet führenden Unternehmen entworfen und hergestellt, um die richtige Kombination aus hoher mechanischer Festigkeit und reduziertem Gewicht zu erreichen. Die für das eloxierte Aluminium verwendete Legierung 6060 (zu den physikalischen und chemischen Eigenschaften siehe unten) wurde mit Abmessungstoleranzen stranggepresst, die der Norm EN 755-9 entsprechen.

in Lineareinheiten erwiesen. Die Kombination mit Nullspiel-Zahnriemenscheiben ermöglicht so Wechselbelastungen ohne Umkehrspiel. Durch Ausnutzung der durch das Profil vorgegebenen maximalen Zahnriemenbreite und Einstellung einer optimalen Vorspannung des Riemens können die folgenden Eigenschaften erreicht werden:

- Hohe Verfahrgeschwindigkeiten
- Geringe Geräuschentwicklung
- Niedriger Verschleiß

Antriebsriemen

In den Lineareinheiten der ZMCH Serie werden stahlverstärkte Zahnriemen aus Polyurethan mit AT-Zahnprofil eingesetzt. Dieser Zahnriementyp hat sich in Bezug auf zulässige Antriebsmomente, Kompaktheit und Geräuschentwicklung als der zweckmäßigste für die Antriebsübertragung

Laufwagen

Der Laufwagen der Lineareinheiten der ZMCH Serie besteht aus eloxiertem Aluminium. Für jeden Typ von Lineareinheit sind Laufwagen in zwei Längen verfügbar.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 149

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Widerstand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	70	23,8	200	880-900	33	600-655

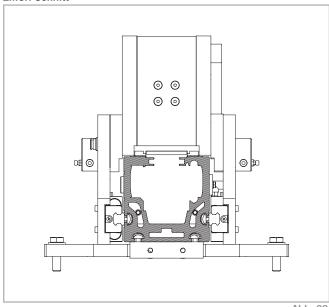
Tab. 150

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N mm²	N — mm²	%	_
250	200	10	75

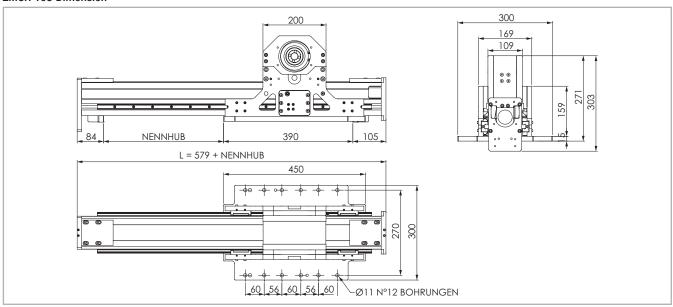
Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung. Lineareinheiten der ZMCH Serie werden mit folgendem Führungssystem angeboten:


ZMCH mit Kugelumlaufführungen:

- Die Kugelumlaufführungen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit vorgespannten Kugellagerblöcken ausgestattet, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden.
- Die Blöcke verfügen über Dichtungen auf beiden Seiten.

Merkmale des beschriebenen linearen Bewegungssystems:


- Hohe Geschwindigkeit und Beschleunigung
- Hohe Tragzahlen
- Hohe zulässige Biegemomente
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung

ZMCH Schnitt

ZMCH 105

ZMCH 105 Dimension

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

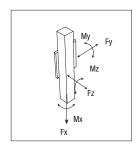
Abb. 69

Technische Daten

	Тур
	ZMCH 105
Maximale Hublänge [mm]	2100
Max. Wiederholgenauigkeit [mm]*1	± 0,1
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	25
Zahnriemen-Typ	50 AT 10 HPF
Typ Zahnriemenscheibe	Z 29
Riemenscheibendurchmesser [mm]	92,31
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	290
Gewicht des Laufwagens [kg]	16,5
Gewicht Hub Null [kg]	28
Gewicht je 100 mm Hub [kg]	1,5
Losbrechmoment [Nm]	4,4
Schienengröße [mm]	15

^{*1)} Die Wiederholgenauigkeitist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [mm⁴]	l _y [mm⁴]	Ι _ρ [mm⁴]
ZMCH 105	5.675.808	4.476.959	10.152.767
			Tab. 153

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht [kg/m]
ZMCH 105	50 AT 10 HPF	50	0,290
D: !"		00	Tab. 154

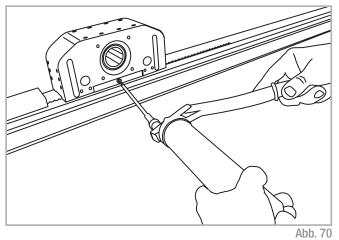
Riemenlänge (mm) = L + 260

ZMCH 105 - Tragzahlen

Тур	F [t	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ZMCH 105	4980	5850	61120	39780	61120	3591	10390	10390

Tab. 152

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


Zapfen

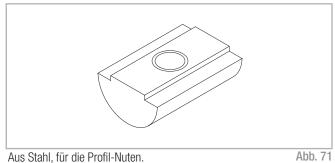
ZMCH-Lineareinheiten mit Kugellagerführung

Die Linearführungswagen sind zusätzlich mit einer Kugelkette ausgerüstet. Die Kugelkette sorgt dafür, dass die Wälzkörper während ihrer Bewegung durch den Linearführungswagen in Abstand zueinander gehalten und in den Laufbahnen geführt werden. Das Schmierintervall beträgt 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert).

Für Anwendungen mit langer Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

ZMCH

Nachschmiermenge (je Schmieranschluss):

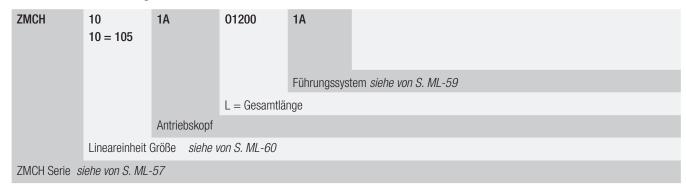

Тур	Menge [cm³] pro Schmiernippel
ZMCH 105	0,2

- Adapter der Fettpresse auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsistenzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Zubehör

Zur Installation von Zubehörteilen auf dem Aluminiumprofil der Baureihe ZMCH empfehlen wir die unten aufgeführten T-Nutensteine.

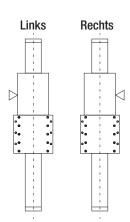
T-Nutenstein


Aus Stahl, für die Profil-Nuten.

Einheit (mm)

	Hole	L	Bestellcode
ZMCH 105	M4	8	1001046

Bestellschlüssel / ~

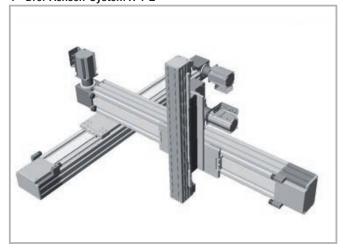

Bestellbezeichnung für Lineareinheiten ZMCH

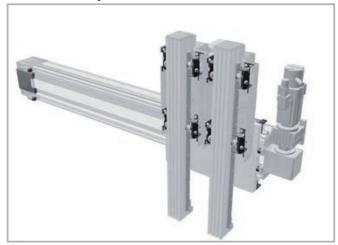
Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

Mehrachsensysteme


1 - Zwei-Achsen-System Y-Z


2 - Zwei-Achsen-System X-Y


3 - Drei-Achsen-System X-Y-Z

4 - Drei-Achsen-System X-Y-Z

5 - Zwei-Achsen-System Y-Z

6 - Zwei-Achsen-System Y-Z

Precision System

TH Serie 🗸 🗸

Beschreibung TH Serie

Abb. 1

Die Linearachsen der Baureihe TH sind verwindungssteife, kompakte Lineareinheiten mit Kugelgewindetrieb. Sie ermöglichen eine hohe Positionierund Wiederholgenauigkeit in allen Prozessphasen mit optimalen Betriebseigenschaften und Leistungsdaten. Erreichbare Wiederholgenauigkeit von bis zu $5\mu m.$

Die Übertragung der Schubkraft erfolgt mit hocheffizienten Kugelgewindetrieben, die in verschiedenen Präzisionsklassen und Gewindesteigungen erhältlich sind. Die Linearbewegung erfolgt mit zwei oder vier vorgespannten Linearführungswagen mit Kugelkäfigtechnologie, die auf zwei präzise ausgerichteten Schienen montiert sind. Die Baureihe TH ist mit einfachem oder doppeltem Laufwagen erhältlich, um verschiedene Belastungsanforderungen zu erfüllen.

Die Lineareinheiten der Baureihe TH verfügen darüber hinaus über separate Schmierleitungen für die Kugelumlaufführungen und Kugelgewindetrieb, um eine sichere Schmierung zu ermöglichen. Durch ihre unglaublich kompakte Bauweise sind die TH-Linearachsen die ideale Lösung bei Anwendungen, bei denen der Bauraum begrenzt ist.

- Extrem kompakte Abmessungen
- Hohe Positioniergenauigkeit
- Hohe Tragzahlen und Steifigkeit
- Vorgespannter Kugelgewindetrieb
- Vorgespannte Kugelumlaufführung mit Kugelkette
- Innenliegend geschützte Linearführungen und Kugelgewindetrieb
- Sichere Schmierung durch separate Schmierkanäle für die Kugelumlaufführungen und den Kugelgewindetrieb

Aufbau des Systems

Grundplatte und Laufwagen aus Aluminium

Die Grundplatte und Laufwagen der Rollon Linearachse der TH Serie wurden in Zusammenarbeit mit führenden Unternehmen der Branche entwickelt und gebaut. Die eloxierten Strangpressprofile weisen eine hohe Präzision und sehr gute mechanische Eigenschaften auf. Die Abmessungen sind entsprechend der EN 755-9 toleriert. Bei dem verwendeten Material handelt es sich um die Aluminium- Legierung 6060. An den Außenseiten des Strangpressprofils befinden sich Nuten für eine einfache und schnelle Montage und/oder Befestigung von Zubehörelementen.

Laufwagen

Die Laufwagen der Rollon Linearachse der TH Serie bestehen aus eloxiertem Aluminium und bilden die Schnittstelle zwischen der Lineareinheit und der Anschlusskonstruktion des Anwenders. Zwei parallel angeordnete Profilschienen mit zwei oder vier vorgespannten Linearführungswagen sorgen für die sichere Aufnahme von hohen Kräften und hohen Lastmomenten. Die Linearführungslaufwagen sind zusätzlich mit einer Kugelkette ausgestattet. Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Laufparallelität
- Hohe Positioniergenauigkeit
- Hohe Tragzahlen und eine hohe Steifigkeit
- Geringer Verschleiß
- Niedriger Verschiebewiderstand

Antriebssystem

Bei den Rollon Linearachsen der TH Serie werden präzisionsgerollte Kugelgewindetriebe mit vorgespannten oder nicht vorgespannten Muttern eingesetzt. Die Standardpräzisionsklasse für die verwendeten Kugelgewindetriebe ist ISO 7. Auf Anfrage ist auch die Präzisionsklasse ISO 5 erhältlich. Die Kugelgewindetriebe der Linearachsen sind mit unterschiedlichen Durchmessern und Steigungen erhältlich. Mit der oben beschriebenen Technologie werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten (bei Kugelgewindetrieben mit großer Steigung)
- Hohe Vorschubkräfte
- Hohe Genauigkeit
- Hohe mechanische Leistung
- Geringer Verschleiß
- Geringer Verschiebewiderstand

Abdeckung

Die Rollon Linearachsen der TH Serie sind mit Abdeckbändern zum Schutz vor Verschmutzung der mechanischen Komponenten ausgestattet.

Außerdem sind sowohl die Kugelumlaufführungen als auch die Kugelgewindetriebe mit Abstreifern bzw. Dichtungen versehen, die direkt auf die Kugellaufbahnen wirken.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Physikalische Eigenschaften

Tab. 1

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

TH 70 SP2

Abmessungen (Einzelläufer) TH 70 SP2

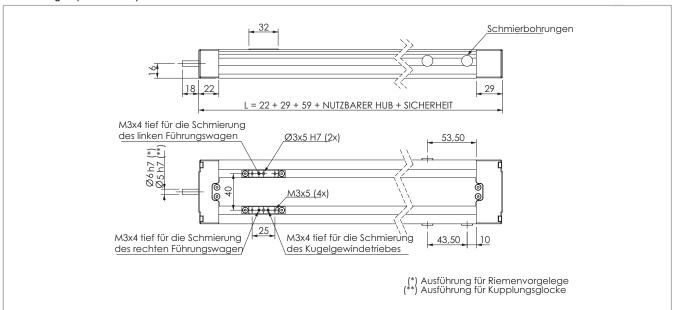


Abb. 2

Technische Daten

	Тур
	TH 70 SP2
Maximale Hublänge [mm]	591
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	0,152
Gewicht Hub Null [kg]	0,58
Gewicht je 100 mm Hub [kg]	0,26
Schienengröße [mm]	9 mini

Flächenträgheitsmomente der Aluminiumprofile

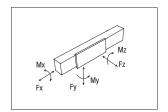
Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 70 SP2	0,0054	0,0367	0,042

Tab. 6

Tab. 4

Tab. 5

Kugelgewindetrieb Präzision


Тур	Max. Positioniergenau- igkeit [mm/300mm]		Max. Wiederhol- genauigkeit [mm]	
	ISO 5*	ISO 7	ISO 5*	ISO 7
TH 70 / 8-2.5	0,023	0,05	0,02	0,02

^{*} ISO5 ist nur für den maximalen Hub 370 mm verfügbar.

TH 70 SP2 - Tragzahlen F_x

Тур		F _x [N]	
	Spindel	Stat.	Dyn.
TH 70 SP2	8-2,5	2220	1470

Tab. 7

TH 70 SP2 - Tragzahlen

Тур	F _y [N]		F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 70 SP2	4990	3140	4990	99,8	12,8	12,8

TH 70 SP4

Abmessungen (Zwei Läufer) TH 70 SP4

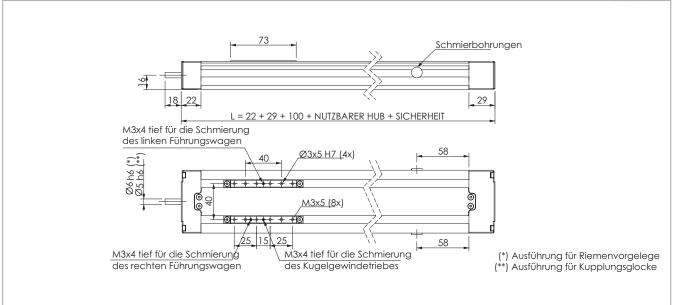


Abb. 3

Technische Daten

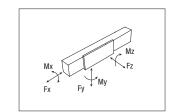
	Тур
	TH 70 SP4
Maximale Hublänge [mm]	550
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	0,268
Gewicht Hub Null [kg]	0,8
Gewicht je 100 mm Hub [kg]	0,26
Schienengröße [mm]	9 mini

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 70 SP4	0,0054	0,0367	0,042

Tab. 11

Tab. 9


Kugelgewindetrieb Präzision

Тур	Max. Position keit [mm		Max. Wi genauigk	
	ISO 5* ISO 7		ISO 5*	ISO 7
TH 70 / 8-2.5	0,023	0,05	0,02	0,02
* ISO5 ist nur für den maximalen Hub 330 mm verfügbar. Tab. 1				

TH 70 SP4 - Tragzahlen F_x

Тур		F _x [N]	
	Spindel	Stat.	Dyn
TH 70 SP4	8-2,5	2220	1470

Tab. 12

TH 70 SP4 - Tragzahlen

Тур	F. [N	y j]	F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 70 SP4	9980	6280	9980	200	319	319

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TH 90 SP2

Abmessungen (Einzelläufer) TH 90 SP2

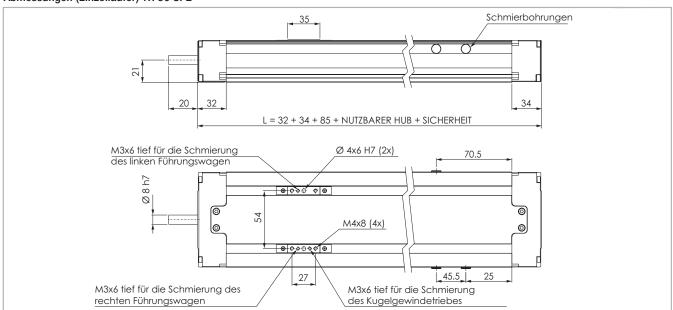


Abb. 4

Technische Daten

	Тур
	TH 90 SP2
Maximale Hublänge [mm]	665
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	0,65
Gewicht Hub Null [kg]	1,41
Gewicht je 100 mm Hub [kg]	0,6
Schienengröße [mm]	12 mini
	Tab. 14

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	_ր
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 90 SP2	0,0130	0,0968	0,1098

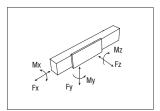
Tab. 16

Losbrechmoment

Тур	Kugelgewinde	[Nm]
TH 90 SP2	12-05	0,07
III 90 3F2	12-10	0,08

Tab. 17

Kugelgewindetrieb Präzision

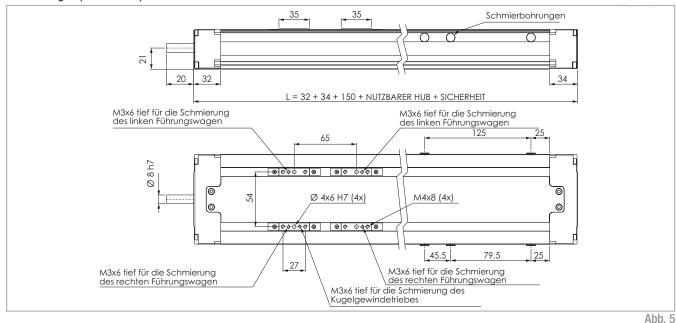

Тур	Max. Positioniergenau- igkeit [mm/300mm] ISO 5 ISO 7		Max. Wiederholgenauigkeit [mm]	
TH 90 / 12-05	0,023	0,05	0,02	0,02
TH 90 / 12-10	0,023	0,05	0,02	0,02

Tab. 15

TH 90 SP2 - Tragzahlen F_x

Тур	F _x [N]			
	Spindel	Stat.	Dyn.	
TH 90 SP2	12-05	9000	4300	
III 90 SP2	12-10	6600	3600	

Tab. 18



TH 90 SP2 - Tragzahlen

Тур	F [1	: VJ	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 90 SP2	7060	6350	7060	192	24	24

TH 90 SP4

Abmessungen (Zwei Läufer) TH 90 SP4

Technische Daten

	Тур
	TH 90 SP4
Maximale Hublänge [mm]	600
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	0,90
Gewicht Hub Null [kg]	2,04
Gewicht je 100 mm Hub [kg]	0,6
Schienengröße [mm]	12 mini
	Tab. 20

Flächenträgheitsmomente der Aluminiumprofile

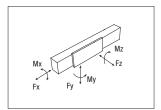
Тур	l _x	l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 90 SP4	0,0130	0,0968	0,1098

Losbrechmoment

Тур	Kugelgewinde	[Nm]
TH 90 SP4	12-05	0,07
	12-10	0,08
		Tab. 23

Kugelgewindetrieb Präzision

99						
Тур	Max. Positioniergenauig- keit [mm/300mm]		Max. Wiederhol- genauigkeit [mm]			
	ISO 5 ISO 7		IS0 5	IS0 7		
TH 90 / 12-05	0,023	0,05	0,02	0,02		
TH 90 / 12-10	0,023	0,05	0,02	0,02		


Tab. 21

TH 90 SP4 - Tragzahlen F_x

Тур	F _x [N]			
	Spindel	Stat.	Dyn	
TH 90 SP4	12-05	9000	4300	
III 90 374	12-10	6600	3600	

Tab. 24

Tab. 22

TH 90 SP4 - Tragzahlen

Тур	F [l	: V V	F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 90 SP4	14120	12699	14120	384	459	459

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TH 110 SP2

Abmessungen (Einzelläufer) TH 110 SP2

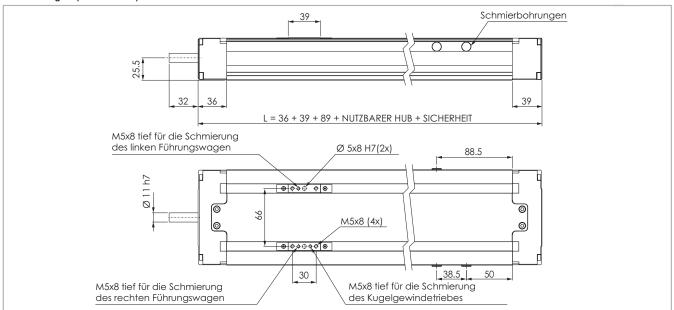


Abb. 6

Technische Daten

	Тур
	TH 110 SP2
Maximale Hublänge [mm]	1411
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	0,76
Gewicht Hub Null [kg]	2,65
Gewicht je 100 mm Hub [kg]	0,83
Schienengröße [mm]	15

Tab. 26

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 110 SP2	0,0287	0,2040	0,2327

Tab. 28

Losbrechmoment

Тур	Kugelgewinde	[Nm]
	16-05	0,16
TH 110 SP2	16-10	0,23
	16-16	0,27

Tab. 29

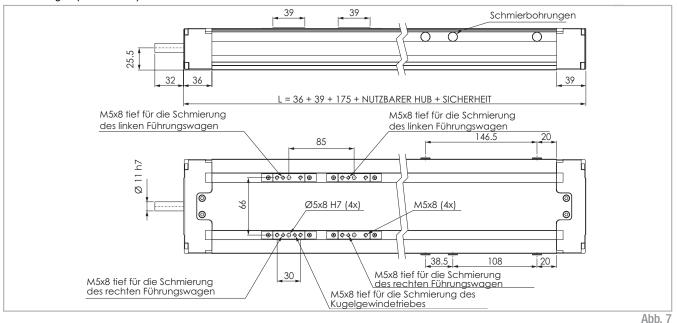
Kugelgewindetrieb Präzision

Тур	Max. Position	oniergenau- n/300mm]		ederhol- ceit [mm]
	ISO 5	IS0 7	ISO 5	ISO 7
TH 110 / 16-05	0,023	0,05	0,005	0,045
TH 110 / 16-10	0,023	0,05	0,005	0,045
TH 110 / 16-16	0,023	0,05	0,005	0,045

Tab. 27

TH 110 SP2 - Tragzahlen F.,

magramen i x						
Тур		F _x [N]				
	Spindel	Stat.	Dyn.			
	16-05	17400	11800			
TH 110 SP2	16-10	18300	10500			
	16-16	18800	10300			
			Tab. 30			


Mx Mz Fz

TH 110 SP2 - Tragzahlen

Тур	F [1	: V]	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 110 SP2	48400	22541	48400	1549	350	350

TH 110 SP4

Abmessungen (Zwei Läufer) TH 110 SP4

Technische Daten

	Тур
	TH 110 SP4
Maximale Hublänge [mm]	1325
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	1,26
Gewicht Hub Null [kg]	4,00
Gewicht je 100 mm Hub [kg]	0,83
Schienengröße [mm]	15

Max. Positioniergenau-

igkeit [mm/300mm]

ISO 5

0,023

0,023

0,023

ISO 7

0,05

0,05

0,05

Tab. 32

ISO 7

0,045

0,045

0,045

Max. Wiederhol-

genauigkeit [mm]

ISO 5

0,005

0,005

0,005

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 110 SP4	0,0287	0,2040	0,2327

Losbrechmoment

Тур	Kugelgewinde	[Nm]
	16-05	0,16
TH 110 SP4	16-10	0,23
	16-16	0,27
		Tab. 35

TH 110 SP4 - Tragzahlen F_x

Тур	F _x [N]				
	Spindel	Stat.	Dyn		
	16-05	17400	11800		
TH 110 SP4	16-10	18300	10500		
	16-16	18800	10300		
			Tab. 36		

Tab. 33

Mx Mz Fz Fz Fy My

TH 110 SP4 - Tragzahlen

Kugelgewindetrieb Präzision

Тур

TH 110 / 16-05

TH 110 / 16-10

TH 110 / 16-16

Тур	F [1	: Ňj	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TH 110 SP4	96800	45082	96800	3098	2606	2606

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TH 145 SP2

Abmessungen (Einzelläufer) TH 145 SP2

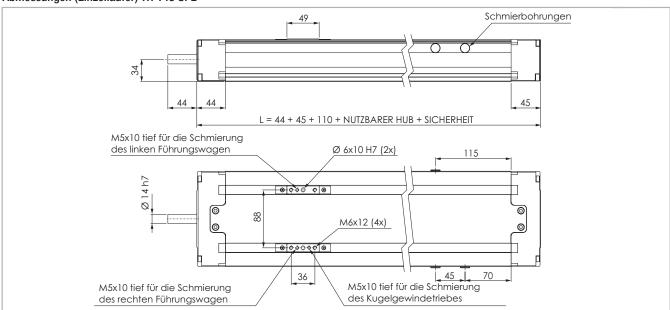


Abb. 8

Technische Daten

	Тур
	TH 145 SP2
Maximale Hublänge [mm]	1690
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	1,45
Gewicht Hub Null [kg]	5,9
Gewicht je 100 mm Hub [kg]	1,6
Schienengröße [mm]	20

Tab. 38

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
TH 145 SP2	0,090	0,659	0,749
			Tab. 40

Losbrechmoment

Тур	Kugelgewinde	[Nm]
	20-05	0,22
TH 145 SP2	20-20	0,35
	25-10	0,29

Tab. 41

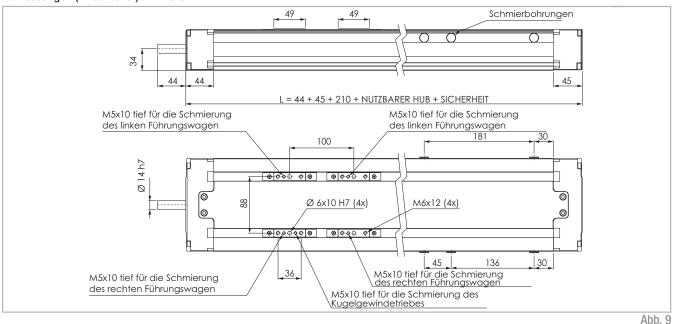
Kugelgewindetrieb Präzision

Тур	Max. Position igkeit [mn		100	ederhol- keit [mm]
	ISO 5	IS0 7	ISO 5	IS0 7
TH 145 / 20-05	0,023	0,05	0,005	0,045
TH 145 / 20-20	0,023	0,05	0,005	0,045
TH 145 / 25-10	0,023	0,05	0,005	0,045

Tab. 39

TH 145 SP2 - Tragzahlen F_x

Тур	F _x [N]		
	Spindel	Stat.	Dyn.
	20-05	25900	14600
TH 145 SP2	20-20	23900	13400
	25-10	32600	16000
			Tab. 42


Mx Mz Fz Fz

TH 145 SP2 - Tragzahlen

Тур	F [1	: Vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 145 SP2	76800	35399	76800	3341	668	668

TH 145 SP4

Abmessungen (Zwei Läufer) TH 145 SP4

Technische Daten

	Тур
	TH 145 SP4
Maximale Hublänge [mm]	1590
Maximale Geschwindigkeit [m/s]	S. S. PS-14
Gewicht des Laufwagens [kg]	2,42
Gewicht Hub Null [kg]	8,3
Gewicht je 100 mm Hub [kg]	1,6
Schienengröße [mm]	20

Max. Positioniergenau-

igkeit [mm/300mm]

ISO 7

0,05

0,05

0,05

ISO 5

0,023

0,023

0,023

Tab. 44

Max. Wiederhol-

genauigkeit [mm]

ISO 5

0,005

0,005

0,005

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TH 145 SP4	0,090	0,659	0,749

Losbrechmoment

Тур	Kugelgewinde	[Nm]
	20-05	0,22
TH 145 SP4	20-20	0,35
	25-10	0,29

TH 145 SP4 - Tragzahlen F_x

Тур	F _x [N]		
	Spindel	Stat.	Dyn.
	20-05	25900	14600
TH 145 SP4	20-20	23900	13400
	25-10	32600	16000
			Tab. 48

Tab. 45

ISO 7

0,045

0,045

0,045

Mx Mz Fz Fy My

TH 145 SP4 - Tragzahlen

Kugelgewindetrieb Präzision

Тур

TH 145 / 20-05

TH 145 / 20-20

TH 145 / 25-10

Тур	F [N	: Vj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TH 145 SP4	153600	70798	153600	6682	5053	5053

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

Tab. 46

Abmessungen Motoranbau

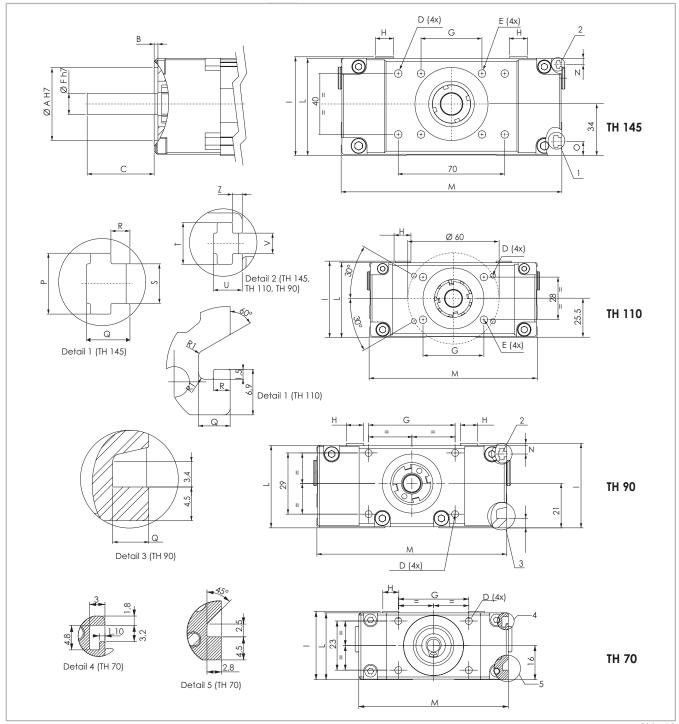
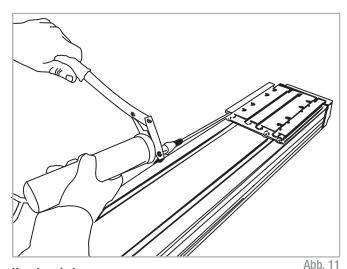


Abb. 10


Einh	eit	mm

Lillion																					
Тур	А	В	С	D	Е	F	G	Н	1	L	M	N	0	Р	Q	R	S	Т	U	V	Z
TH 70	28	2,5	18	M4x8	-	5 oder 6	33	7,5	32	31,3	70	-	-	-	-	-	-	-	-	-	-
TH 90	28	2,5	20	M4x8	-	8	41	8	40	39	90	4	4,5	-	4,8	-	-	5,5	3,8	2,7	1,3
TH 110	40	2,5	32	M4x8	M6x10	11	40	10	50	49	110	4	-	-	4,8	2,5	-	5,5	3,8	2,7	1,3
TH 145	48	2,5	44	M6x10	M6x12	14	40	12	65	64	145	4	9,5	8	5,7	2,5	5,2	5,5	3,8	2,7	1,3

Schmierung

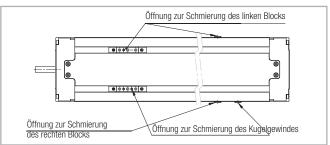
TH-Lineareinheiten mit Kugelumlaufführungen

In den Lineareinheiten der Ausführung TH werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischen den Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und folglich die Lebensdauer erhöht. Dieses System garantiert lange Wartungsintervalle: alle 2000 km bzw. 1 Jahr Nutzungsdauer (es gilt der zuerst erreichte Wert). Für Anwendungen mit einer längeren Lebensdauer, hohen dynamischen Anforderungen bzw. großen Belastungen kontaktieren Sie uns bitte zu einer weiteren Überprüfung.

Kugelgewinde

Der Kugelgewindetrieb der Rollon TH Serie sollte alle 50 Millionen Umdrehungen nachgeschmiert werden.

Тур	Menge [g] pro Schmiernippel
08-2.5	0,1
12-05	0,2
12-10	0,2
16-05	0,41
16-10	0,78
16-16	0,6
20-05	0,79
20-20	1,2
25-10	1,2


Tab. 51

Empfohlene Schmiermittelmengen für die Wagen

Тур	Menge [cm³] pro Schmiernippel
TH 70	0,23
TH 90	0,5
TH 110	0,7
TH 145	1,4

Tab. 52

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsist enzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, großeVerschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Öffnung zur Schmierung des Blocks 2

Öffnung zur Schmierung des Blocks 4

Öffnung zur Schmierung des Blocks 1

Öffnung zur Schmierung des Blocks 3

To übergreifen Sie die Bestiten der Schmierlächer für TH 00 SD 4 auf Seite DS 5

Bitte überprüfen Sie die Position der Schmierlöcher für TH 90 SP 4 auf Seite PS-5. Abb. 13

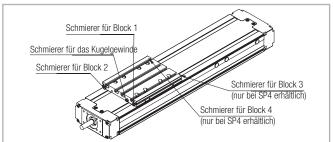


Abb. 14

Kritische Geschwindigkeit

Die maximal erreichbare lineare Geschwindigkeit der Rollon Linearachse der TH Serie hängt von der kritischen Drehzahl der Gewindespindel (Durchmesser, Länge) und von der maximal zulässigen Drehzahl der Spindelmutter ab.

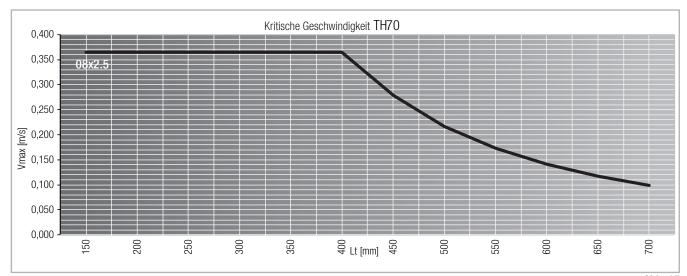


Abb. 15

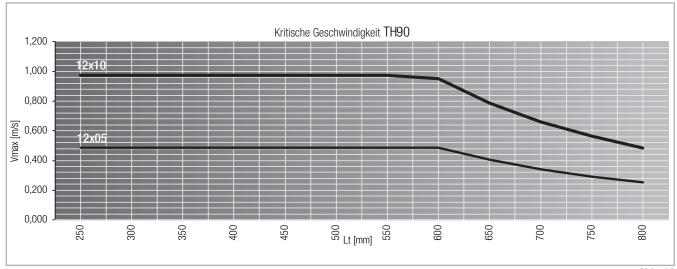


Abb. 16

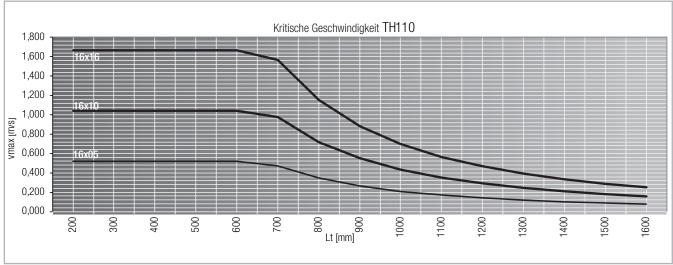


Abb. 17

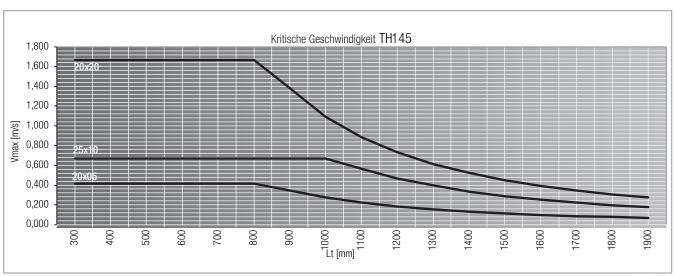
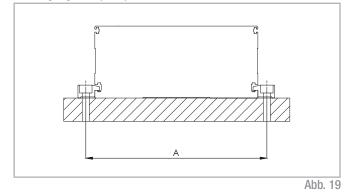



Abb. 18

Zubehör

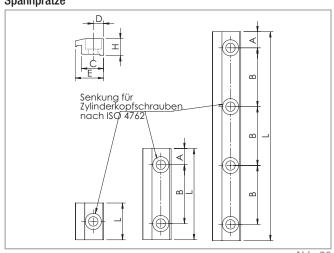
Befestigung mit Spannpratzen

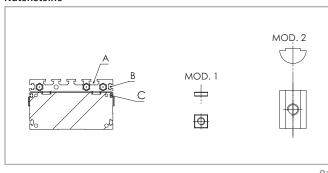
Einheit mm

Тур	А
TH 70	82
TH 90	102
TH 110	126
TH 145	161

Tab. 53

Spannpratze




Abb. 20

Abmessungen (mm)

Тур	N° Bohrungen	Senkung für Schraube	A	В	С	D	Е	Н	L	Bestell- code
TH 70	1	M4	-	-	12,5	6,5	15	9	22	1005198
	2	M4	11	40	10,5	4,5	14,5	9,1	62	1003385
TH 90	4	M4	8,5	30	10,5	4,5	14,5	9,1	107	1003509
111 90	4	M4	8,5	20	10,5	4,5	14,5	9,1	77	1003510
	1	M4	-	-	10,5	4,5	14,5	9,1	25	1003612
	4	M5	8,5	30	15	7	19,3	11,5	107	1002805
TU 440	4	M6	11	40	15	7	19,3	11,5	142	1002864
TH 110 TH 145	1	M6	-	-	15	7	19	11,5	25	1002970
IП 1 4 3	2	M6	11	40	15	7	19	11,5	62	1002971
	4	M5	20	20	15	7	19	11,5	100	1003311

Tab. 54

Nutensteine

21

Einheit (mm)

Тур	А	В	С
TH 70	Mod. 1 M4 - 963.0407.81	Mod. 1 M4 - 963.0407.81	-
TH 90	Mod. 2 M5 - 6000436	-	Mod. 1 M2,5 - 6001361
TH 110	Mod. 2 M5 - 6000436	Mod. 1 M4 - 963.0407.81	Mod. 1 M2,5 - 6001361
TH 145	Mod. 2 M6 - 6000437	Mod. 1 M4 - 963.0407.81	Mod. 1 M2,5 - 6001361

Näherungsschalter

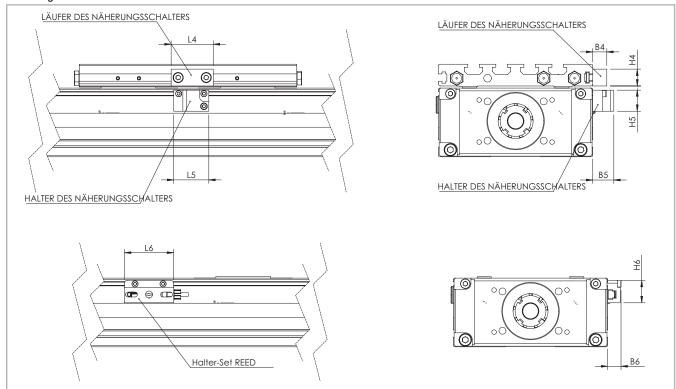


Abb. 22

Einheit (mm)

	B4	B5	В6	L4	L5	L6	H4	Н5	Н6	Sensor	Halter-Set Näherungs- schalter	Läufer-Set Näherungs- schalter	Halter-Set REED
TH 70	8	10	8	30	25	35	10	18	18	Ø 6,5	G001975	G001976	G001974
TH 90	10	15	9,5	12	25	35	6	15	16	Ø 8	G001193	G001203	G001204
TH 110	10	15	9,5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204
TH 145	10	15	9,5	30	25	35	12	15	16	Ø 8	G001193	G001198	G001204

Tab. 56

External carriage

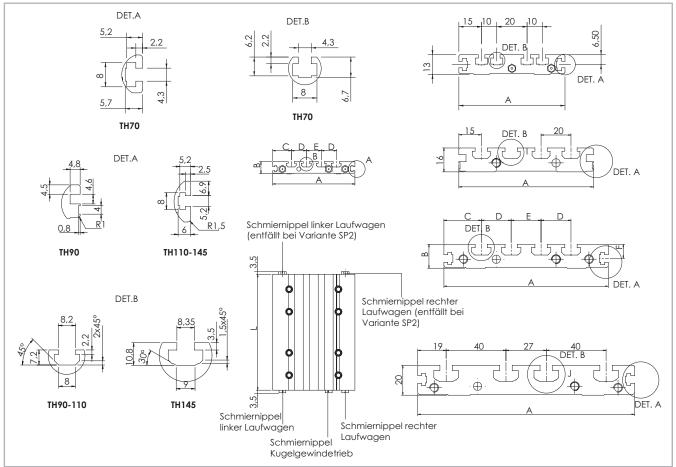


Abb. 23

Verbindungsplatte für SP2	Тур	А	В	С	D	E	F	L	Bestellcode
6/12/	TH 70	70	13	15	10	20	6,5	60	G001957
	TH 90	90	16	15	20	20	6,8	60	G001195
	TH 110	110	16	25	20	20	9,5	60	G001059
	TH 145	145	20	19	40	27	9,5	80	G001062

Tab. 57

Verbindungsplatte für SP4	Тур	А	В	С	D	E	F	L	Bestellcode
	TH 70	70	13	15	10	20	6,5	95	G001958
	TH 90	90	16	15	20	20	6,8	125	G001194
	TH 110	110	16	25	20	20	9,5	155	G001060
-	TH 145	145	20	19	40	27	9,5	190	G001061

Tab. 58

Kupplung	Motoradapter

Tab. 59

Montagekits

Um einen Kreuztisch aus zwei TH Achsen bauen zu können, bietet ROLLON entsprechende Befestigungskits an. Die verfügbaren Kombinationen sind in der folgenden Tabelle ersichtlich.

•						
Beispiel <i>F</i>	Bestellcode Kit					
	TH 90 - TH 90 XY ₂	G001199				
	TH 90 - TH 110 XY ₂	G001199				
4	TH 90 - TH 110 XZ	G001205				
	TH 110 - TH 110 XY ₂	G001080				
4	TH 110 - TH 110 XZ	G001083				
1	TH 110 - TH 145 XY ₂	G001079				
4	TH 110 - TH 145 XZ	G001084				
1	TH 145 - TH 145 XY ₂	G001081				
4	TH 145 - TH 145 XZ	G001085				
	TH 90 - TH 90 XY1	G001483				
	TH 90 - TH 90 XY ₃	G001483 + G001194				
	TH 110 - TH 110 XY1	G001173				
	TH 110 - TH 110 XY2	G001173 + G001060				
	TH 145 - TH 145 XY1	G001362				
Contract of the same of the sa	TH 145 - TH 145 XY2	G001362 + G001061				

Riemenvorgelege

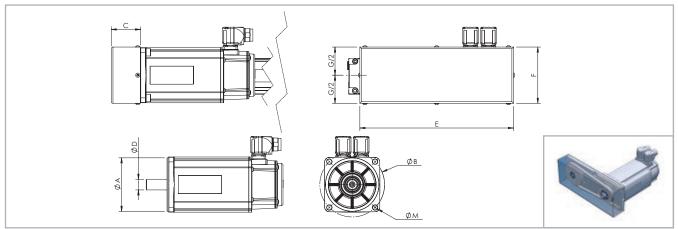
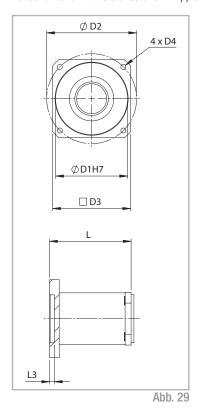


Abb. 28


Тур	Untersetzung	А	В	С	D	Е	F	M	Bestellcode
TH 90	1:1	Ø 40	Ø 63	30	Ø 9	168	63	M4	G001592
TH 110	1:1	Ø 40	Ø 63	40,5	Ø 9	233	88	M4	G001011
TH 110	1:1	Ø 50	Ø 70	40,5	Ø 14	233	88	M4	G001055
TH 110	1:1	Ø 60	Ø 75	40,5	Ø 14	233	88	M6	G001013
TH 145	1:1	Ø 80	Ø 100	52	Ø 14	273	100	M6	G000984
TH 145	1:1	Ø 95	Ø 115	52	Ø 19	273	100	M8	G000988

Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik

Tab. 61

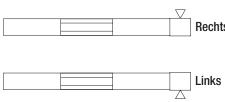
Anbau der Motoren

Die Rollon Lineartische der TH-Serie können für den einfachen und schnellen Anbau der Motoren mit verschiedenen Motorglocken und Adapterflanschen und mit torsionssteifen Kupplungen für die Verbindung zwischen Kugelgewindetrieb und Motor geliefert werden. Die folgende Tabelle zeigt die für die jeweiligen Tische erhältlichen Motorglocken:

Тур	D1	D2	D3	D4	L	L3	Bestellcode
TH70	Ø 30	Ø 45	38	M3	52	4	G002000
TH70	Ø 40	Ø 63	54	M4	49	3,5	G002001
TH70	Ø 50	Ø 70	60	M4	59	4	G002002
TH90	Ø 40	Ø 63	56	M5	50	3	G001192
TH110	Ø 60	Ø 75	65	M6	68	4	G001051
TH110	Ø 73,1	Ø 98,4	86	M5	76,7	2	G001074
TH110	Ø 60	Ø 75	65	M5	68	4	G001119
TH110	Ø 50	Ø 70	65	Ø 5,4	75	11	G001200
TH145	Ø 50	Ø 70	80x60	M4	92	21	G000979
TH145	Ø 70	Ø 85	80x85	M6	92	4	G001066
TH145	Ø 70	Ø 90	80x85	M5	92	5	G001067
TH145	Ø 80	Ø 100	90	M6	92	4	G001068
TH145	Ø 50	Ø 65	80x85	M5	92	21	G001069
TH145	Ø 60	Ø 75	80x85	M6	92	4	G001070
TH145	Ø 50	Ø 70	80x85	M5	92	21	G001071
TH145	Ø 73	Ø 98,4	85	M5	92	4	G001072
TH145	Ø 55	68X40	85x60	Ø6,4	82	11	G001073

PS-20 Tab. 62

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten TH Serie

Н	09 07=70 09=90 11=110 14=145	1205 08-2.5 12-05 12-10 16-05 16-10 16-16 20-05 20-20 25-10	5P 5P=IS0 5 7N=IS0 7	0800	1A 1A=SP2 Vorbereitet für Kupplungsglocke 2A=SP4 Vorbereitet für Kupplungsglocke 3A=SP2 Vorbereitet für Riemenvorgelege 4A=SP4 Vorbereitet für Riemenvorgelege		
				L=Gesamtläng	le		
			Typ siehe vo	on S. PS-4 bis S	. PS-11, tab. 5, 10, 15, 21, 27, 33		
		Gewindetrieb	Durchmesser u	nd Steigung			
	Lineareinheit Größe siehe von S. PS-4 bis S. PS-11						
Typ TH Serie	siehe S. PS-2						

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

TT Serie // ~

Beschreibung TT Serie

Abb. 30

TT

Die Linearachsen der Baureihe TT werden vor allem für hochpräzises Positionieren innerhalb eines Bereichs von 10 μ m mit einer Wiederholgenauigkeit von 5 μ m verwendet. Die aus sehr verwindungssteifen, eloxierten Aluminium-Strangpressprofilen hergestellten Linearführungen dieser Baureihe wurden für hohe Belastungen und präzise Bewegungen entwickelt, die zum Beispiel bei Werkzeugmaschinen und anspruchsvollem Maschinendesign verlangt werden.

Alle Montageflächen und Bezugspunkte wurden so entwickelt, dass alle Abweichungen (Gieren, Stampfen und Rollen) entlang des gesamten Wegs signifikant reduziert werden. Der für hohe Lasten ausgelegte Laufwagen ist mit einem Kugelgewindetrieb mit vorgespannter Spindel ausgestattet (Genauigkeitsklasse C5 oder C7), wobei die Nutzlast von einem System mit vier Führungswagen getragen wird, die auf zwei parallelen Linearführungen montiert sind. Hohe Geschwindigkeiten können mit speziellen Spindeln mit besonders großer Gewindesteigung erreicht werden.

Die Baureihe TT verfügt über alle notwendigen Eigenschaften, um auf einfache Weise Mehrachsensysteme zu montieren. Alle Einheiten der Baureihe TT werden zu 100% geprüft und mit einem Genauigkeitszertifikat geliefert.

Aufbau des Systems

Grundplatte und Laufwagen aus Aluminium

Die Grundplatte und Laufwagen der Rollon Lineartische der TT-Serie wurden in Zusammenarbeit mit führenden Unternehmen der Branche entwickelt und gebaut. Die eloxierten Strangpressprofile weisen eine hohe Präzision und sehr gute mechanische Eigenschaften auf. Die Abmessungen sind entsprechend der EN 755-9 toleriert. Bei dem verwendeten Material handelt es sich um die Aluminium- Legierung 6060. Die Anschraubflächen der Kugelumlaufführungen und der Lagerböcke für den Kugelgewindetrieb, sowie die Anschraubfläche der Grundplatte und des Laufwagens werden mit hochmodernen Werkzeugmaschinen überarbeitet, um ein hochpräzises positionieren der Lineartische zu gewährleisten. An den Außenseiten des Strangpressprofils befinden sich Nuten für eine einfache und schnelle Montage und/oder zur Befestigung von Zubehörelementen.

Laufwagen

Die Laufwagen der Rollon Lineartische der TT-Serie bestehen aus eloxiertem Aluminium und bilden die Schnittstelle zwischen der Lineareinheit und der Anschlusskonstruktion des Anwenders. Zwei parallel angeordnete Profilschienen mit vier vorgespannten Linearführungswagen sorgen für die sichere Aufnahme von hohen Kräften und hohen Lastmomenten. Die Linearführungslaufwagen sind zusätzlich mit einer Kugelkette ausgestattet. Mit dem oben beschriebenen Führungssystem werden folgende Eigenschaften erreicht:

- Hohe Laufparallelität
- Hohe Positioniergenauigkeit
- Hohe Tragzahlen und eine hohe Steifigkeit
- Geringer Verschleiß
- Niedriger Verschiebewiderstand

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

ΑI Si Cu Verunreinigungen Mg Fe Mn Zn Rest 0,35-0,60 0,30 0,10 0,10 0,10 0,05-0,15 0,30-0,60 Tab. 63

Physikalische Eigenschaften

Tab. 64

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Wider- stand	Schmelz temperatur
$\frac{\text{kg}}{\text{dm}^3}$	$\frac{\text{kN}}{\text{mm}^2}$	$\frac{10^{-6}}{K}$			Ω . m . 10^{-9}	°C
2,7	69	23	200	880-900	33	600-655

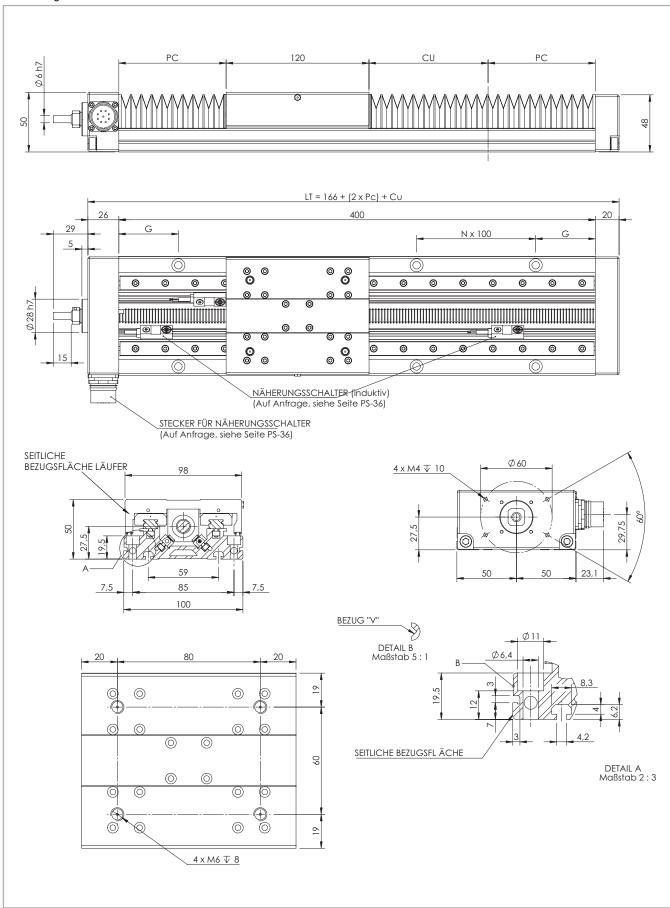
Mechanische Eigenschaften

Rp (02) HB Rm Α Ν Ν % mm² mm² 205 165 60-80 10

Antriebssystem

Bei den Rollon Lineartischen der TT-Serie werden präzisionsgerollte Kugelgewindetriebe mit vorgespannten oder nicht vorgespannten Muttern eingesetzt. Die Standardpräzisionsklasse für die verwendeten Kugelgewindetriebe ist ISO 5. Auf Anfrage ist auch die Präzisionsklasse ISO 7 erhältlich. Die Kugelgewindetriebe der Lineartische sind mit unterschiedlichen Durchmessern und Steigungen erhältlich. Mit der oben beschriebenen Technologie werden folgende Eigenschaften erreicht:

- Hohe Geschwindigkeiten (bei Kugelgewindetrieben mit großer Steigung)
- Hohe Vorschubkräfte
- Hohe Genauigkeit
- Hohe mechanische Leistung
- Geringer Verschleiß
- Geringer Verschiebewiderstand


Abdeckung

Die Rollon Lineartische der TT Serie sind mit Faltenbälgen zum Schutz vor Verschmutzung der mechanischen und elektronischen Komponenten ausgestattet, die im Inneren des Tisches untergebracht sind.

Außerdem sind sowohl die Kugelumlaufführungen als auch die Kugelgewindetriebe mit Abstreifern bzw. Dichtungen versehen, die direkt auf die Kugellaufbahnen wirken.

TT 100

Abmessungen TT 100

Technische Daten

Nutzhub CU [mm]	Gesamtlänge LT [mm]	Maß G [mm]	Masse [Kg]
46	246	50	2,5
114	346	50	3
182	446	50	4
252	546	50	5
320	646	50	6
390	746	50	7
458	846	50	7
526	946	50	8
596	1046	50	9
664	1146	50	10
734	1246	50	11
802	1346	50	11
940	1546	50	13

Anmerkung: Für den Kugelgewindetrieb 12/10 ist ein maximaler Hub von 664 mm möglich.

Tab. 66

Technische Daten

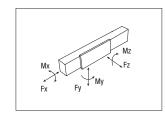
	Тур
	TT 100
Maximale Geschwindigkeit [m/s]	S. S. PS-35
Gewicht des Laufwagens [kg]	0,93
Schienengröße [mm]	12 mini

Tab. 68

Flächenträgheitsmomente der Aluminiumprofile

Тур		l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 100	0,006	0,144	0,150

Tab. 69

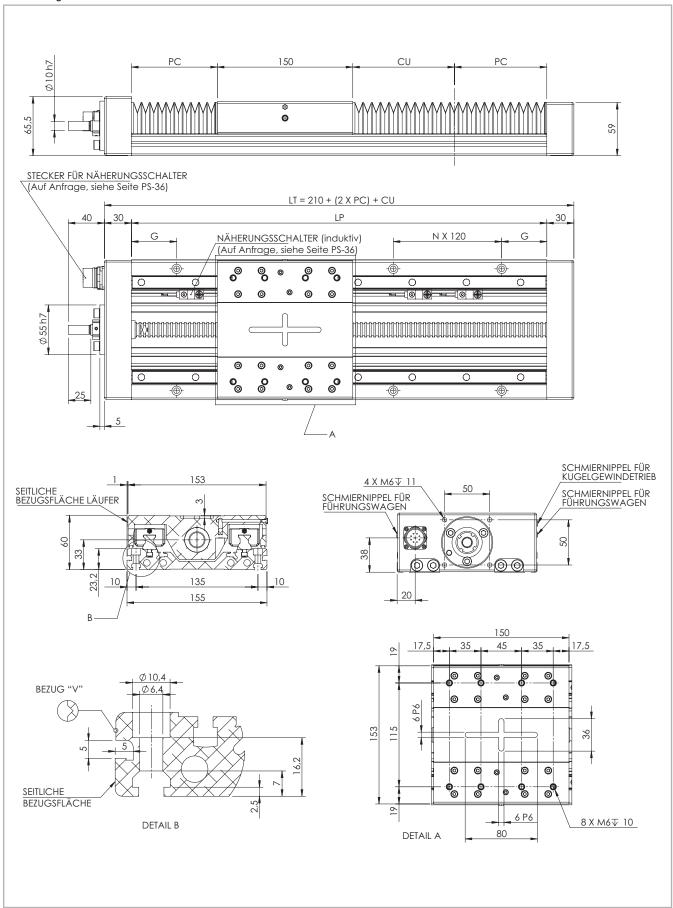

Kugelgewindetrieb Präzision

Тур		oniergenau- n/300mm]		ederhol- keit [mm]
	ISO 5	ISO 7	ISO 5	ISO 7
TT 100 / 12-05	0,023	0,05	-	0,010
TT 100 / 12-10	0,023	0,05	-	0,010

Tab. 67

TT 100 - Tragzahlen F_x

Тур	F _x [N]				
	Spindel	Stat.	Dyn.		
TT 100	12-05	9000	4300		
			Tab. 70		


TT 100 - Tragzahlen

Тур	F _y [N]		F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 100	9980	6280	9980	274	349	349

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TT 155

Abmessungen TT 155

Technische Daten

Nutzhub CU [mm]	Gesamtlänge LT [mm]	Maß G [mm]	Masse [Kg]
92	340	20	7,5
140	400	50	8,5
188	460	20	9
236	520	50	10
282	580	20	11
330	640	50	12
378	700	20	13
424	760	50	13
520	880	50	15
614	1000	50	17
710	1120	50	18
806	1240	50	20
900	1360	50	21
994	1480	50	23
1090	1600	50	25
1184	1720	50	26
1280	1840	50	28
1376	1960	50	30
1470 Anmerkung: für den Ø16	2080 ist ein maximaler Hub vor	50	31 Tab. 72

Anmerkung: für den Ø16 ist ein maximaler Hub von 994 mm möglich.

Tab. 72

Technische Daten

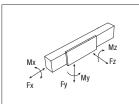
	Тур
	TT 155
Maximale Geschwindigkeit [m/s]	S. S. PS-35
Gewicht des Laufwagens [kg]	2,93
Schienengröße [mm]	15

Tab. 74

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 155	0,009	0,531	0,54

Tab. 75

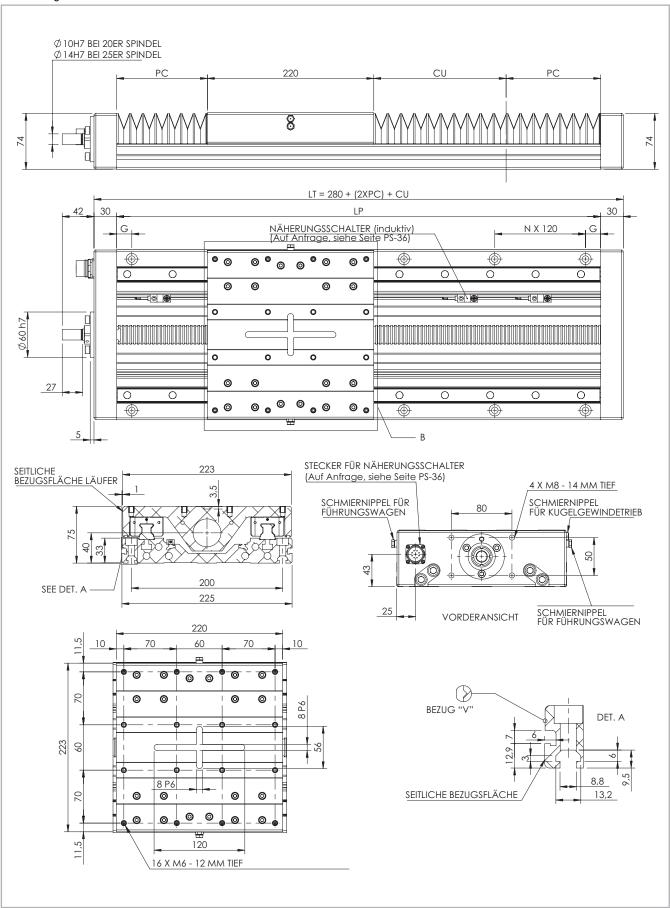

Kugelgewindetrieb Präzision

Тур		oniergenau- n/300mm]	Max. Wi	
	ISO 5	ISO 7	ISO 5	ISO 7
TT 155 / 16-05	0,023	0,05	0,005	0,045
TT 155 / 16-10	0,023	0,05	0,005	0,045
TT 155 / 20-05	0,023	0,05	0,005	0,045
TT 155 / 20-20	0,023	0,05	0,005	0,045
				Tab. 73

TT 155 - Tragzahlen ${\rm F_{\chi}}$

Тур	F <u>,</u> [N]				
	Spindel	Stat.	Dyn.		
	16-05	17400	11800		
TT 155	16-10	18300	10500		
11 155	20-05	25900	14600		
	20-20	23900	13400		
			Tob 70		

Tab. 76


TT 155 - Tragzahlen

······································							
Тур	F [1	: VJ	F _z [N]	M _x [Nm]	М _у [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.	
TT 155	96800	45082	96800	5082	2972	2972	

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TT 225

Abmessungen TT 225

Technische Daten

Nutzhub CU [mm]	Gesamtlänge LT [mm]	Maß G [mm]	Masse [Kg]
92	400	50	15
144	460	20	16
196	520	50	17
248	580	20	19
300	640	50	20
352	700	20	21
404	760	50	23
508	880	50	25
612	1000	50	28
714	1120	50	31
818	1240	50	33
922	1360	50	36
1026	1480	50	39
1234	1720	50	44
1440	1960	50	49
1648*	2200	50	54
1856*	2440	50	60
2062*	2680	50	65
2270*	2920	50	70

Anmerkung: Für den Kugelgewindetrieb Ø20 ist ein maximaler Hub von 1440 mm möglich. * Für die aufgeführten Längen wird keine Garantie für die auf Seite PS-33 angegebenen zulässigen Toleranzen gewährt. Tab. 78

Kugelgewindetrieb Präzision

99					
Тур	Max. Position igkeit [mn		Max. Wi genauigk		
	ISO 5	IS0 7	IS0 5	ISO 7	
TT 225 / 20-05	0,023	0,05	0,005	0,045	
TT 225 / 20-20	0,023	0,05	0,005	0,045	
TT 225 / 25-05	0,023	0,05	0,005	0,045	
TT 225 / 25-10	0,023	0,05	0,005	0,045	
TT 225 / 25-25	0,023	0,05	0,005	0,045	

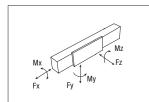
Tab. 79

Technische Daten

	Тур
	TT 225
Maximale Geschwindigkeit [m/s]	S. S. PS-35
Gewicht des Laufwagens [kg]	5,4
Schienengröße [mm]	20

Tab. 80

Flächenträgheitsmomente der Aluminiumprofile

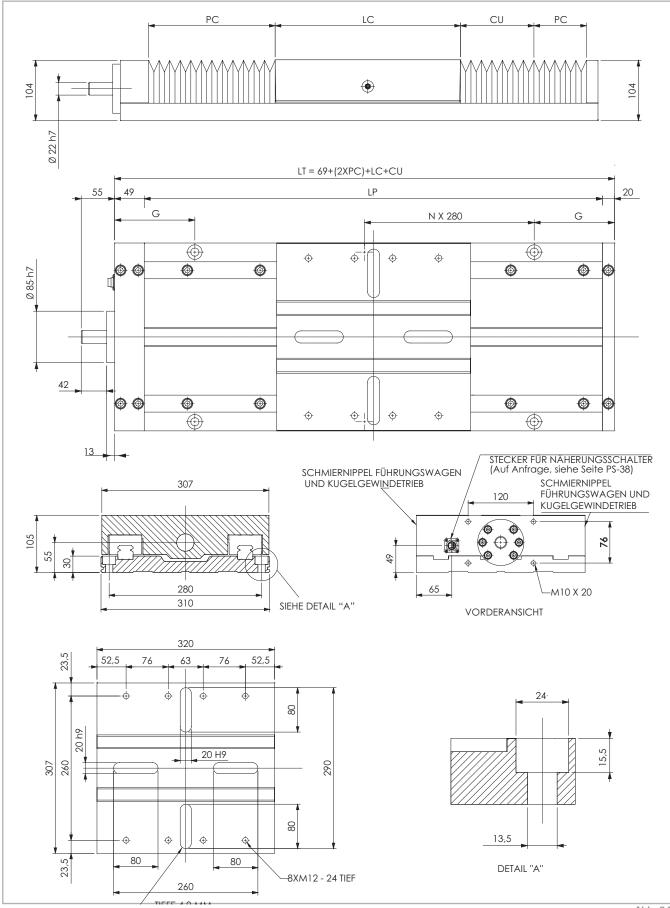

Тур	l	l _y	_p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 225	0,038	2,289	2,327

Tab. 81

TT 225 - Tragzahlen F_x

Тур	F _x [N]				
	Spindel	Stat.	Dyn.		
	20-05	25900	14600		
	20-20	23900	13400		
TT 225	25-05	41200	19800		
	25-10	32600	16000		
	25-25	30500	15100		

Tab. 82


TT 225 - Tragzahlen

Тур	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
TT 225	153600	70798	153600	12288	9984	9984

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TT 310

Abmessungen TT 310

Technische Daten

Nutzhub CU [mm]	Gesamtlänge LT [mm]	Maß G [mm]	Masse [Kg]
100	560	140	47
150	625	172,5	50
200	690	65	53
250	760	100	56
300	825	132,5	59
350	895	167,5	62
400	965	62,5	65
450	1030	95	68
500	1100	130	71
600*	1235	197,5	77
800*	1505	192,5	89
1000*	1750	175	100
1200*	2000	160	111
1600*	2495	127,5	133
2000*	2990	235	156
2400*	3485	202,5	178
3000*	4225	292,5	211 Tab. 04

^{*} Für die aufgeführten Längen wird keine Garantie für die auf Seite PS-33 angegebenen zulässigen Toleranzen gewährt.

Tab. 84

Technische Daten

	Тур
	TT 310
Maximale Geschwindigkeit [m/s]	S. S. PS-36
Gewicht des Laufwagens [kg]	16,6
Schienengröße [mm]	30

Tab. 86

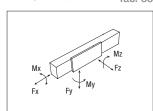
Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	lր
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TT 310	0,1251	8,56	8,008

Tab. 87

Kugelgewindetrieb Präzision

Тур		oniergenau- n/300mm]	Max. Wiederhol- genauigkeit [mm			
	ISO 5	IS0 7	ISO 5	IS0 7		
TT 310 / 32-05	0,023	0,05	0,008	0,045		
TT 310 / 32-10	0,023	0,05	0,008	0,045		
TT 310 / 32-32	0,023	0,05	0,008	0,045		


Tab. 85

TT 310 - Tragzahlen F_x

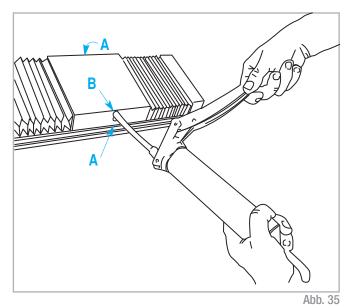
Тур	F _x 1 [N]							
	Spindel	Stat.	Dyn.					
	32-05	11538	8947					
TT 310	32-10	11538	8947					
	32-32	11538	8947					

*1 Bezogen auf die maximale axiale Belastung der Lager, nicht der Kugelumlaufspindel

Tab. 88

TT 310 - Tragzahlen

Тур	F [1	: V	F _z [N]		M _x [Nm]	M _ջ [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.	
TT 310	230500	128492	274500	146031	30195	26625	22365	


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

Schmierung

Wartungsarme Rollon Lineartische der TT Serie

In den Rollon Lineartischen der TT Serie werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischen den Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und

folglich die Lebensdauer erhöht. Mit dem oben beschriebenen Führungssystem können je nach Belastung und Anwendungsart Laufleistungen von 2000 km ohne Nachschmierung erreicht werden. Für eine genaue Prüfung nehmen Sie bitte Kontakt mit Rollon auf.

Kugelgewindetrieb

Der Kugelgewindetrieb der Rollon TT Serie sollte alle 50 Millionen Umdrehungen nachgeschmiert werden.

Standardschmierung

Über Schmiernippel an der Wagenseite der Rollon Lineartische der TT Serie gelangt man zu den Kugelumlaufwagen und separat davon zur Kugelgewindetriebmutter. Die Lineartische sind mit Lithiumseifenfett der Klasse NLGI 2 zu schmieren.

Nachschmiermenge (je Schmieranschluß):

Тур	Menge [cm³] pro Schmiernippel
TT 100	1,4
TT 155	1,4
TT 225	2,8
TT 310	5,6

Tab. 90

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- A Linearführungswagen B Kugelgewindemutter
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsist enzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Empfohlene Schmiermittelmenge für die Kugelgewindetriebe

12-05 0,3 12-10 0,3 16-05 0,41 16-10 0,78 20-05 0,79 20-20 1 25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	Тур	Menge [cm³] pro Schmiernippel
16-05 0,41 16-10 0,78 20-05 0,79 20-20 1 25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	12-05	0,3
16-10 0,78 20-05 0,79 20-20 1 25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	12-10	0,3
20-05 0,79 20-20 1 25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	16-05	0,41
20-20 1 25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	16-10	0,78
25-05 1,2 25-10 1,2 25-25 1,58 32-05 1,8	20-05	0,79
25-10 1,2 25-25 1,58 32-05 1,8	20-20	1
25-25 1,58 32-05 1,8	25-05	1,2
32-05 1,8	25-10	1,2
,	25-25	1,58
00.40	32-05	1,8
32-10 2,0	32-10	2,0
32-32 3,0	32-32	3,0

Prüfzertifikat

Die Rollon Lineartische der TT-Serie sind Produkte mit höchster Präzision. Die Grundplatten und Laufwagen dieser Serie werden stranggepresst. Danach werden alle Außenflächen und die Montageflächen für die inneren mechanischen Komponenten (Kugelumlaufführungen und Lagerböcke) maschinell überarbeitet. Dieses Produktionsverfahren ist, in Kombination mit einer ebenso nach strengen Kriterien durchgeführten Montage, erforderlich, um höchste Präzision bei der Wiederhol-, Positioniergenauigkeit und der Laufparallelität zu erreichen.

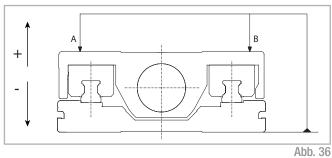
Die Rollon Lineartische der TT-Serie unterliegen einer 100%- Kontrolle.

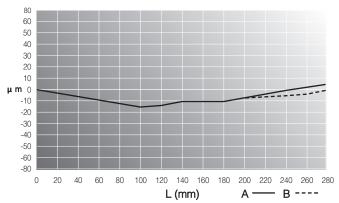
CERTIFICATE OF INSPECTION POSITIONING LINEAR STAGE TT SERIES TYPE AND MODEL Ball screw diam Ball screw lead Serial rif. SPECIFICATION Measurement pitch 20 Max error accepted on each different in 50 50 50 50 TEST RESULTS 9 14 19 14 Max error on G2 Max error on G3 Max error on G4 19/10/07 (°C)20 Temperature (C*) Cheched by Final test result POSITIVO Tel.: (+39) 039 62 59 1 Fax: (+39) 039 62 59 205 E-Mail: infocom@rollon.it www.rollon.it ROLLON S.p.A. **ROLLON**

Jeder einzelne Tisch wird mit einem entsprechenden Prüfzertifikat geliefert. Das Prüfzertifikat bestätigt, dass alle Ergebnisse innerhalb der maximal zulässigen Genauigkeitstoleranzen liegen. Die beigefügten Messkurven können vom Kunden für eine elektronische Kompensation genutzt werden. Die maximal zulässigen Toleranzen sind:

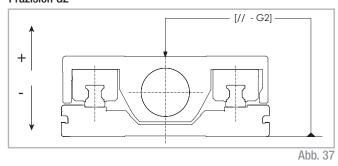
- G1 Rollbewegung 50 µm
- G2 Stampfbewegung 50 µm
- G3 Gierbewegung 50 µm
- G4 Laufparallelität Laufwagen / Grundplatte 50 µm

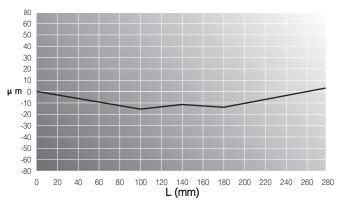
Тур	Spindel	Schraube Festigkeitsklasse 12.9					
		Aluminium	Stahl				
TT 100	M6	10 Nm	14 Nm				
TT 155	M6	10 Nm	14 Nm				
TT 225	M8	15 Nm	30 Nm				
TT 310	M12	60 Nm	120 Nm				

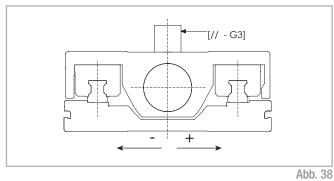

Tab. 92

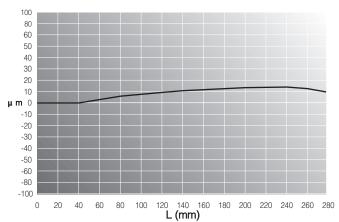

Hinweis: Diese Toleranzen gelten für eine Grundplattenlängen (Lt) von ≤ 2000 mm Diese Werte werden, bei einer Befestigung auf einem Messtisch mit Parallelitätsfehlern von unter 2 µm, ermittelt. Die angegebenen Anzugsmomente der Schrauben in der nachstehenden Tabelle sind einzuhalten. **ACHTUNG:** Die ermittelten Präzisionen gelten nur, wenn der Lineartisch auf einer durchgehenden Anschlusskonstruktion mit derselben Gesamtlänge wie das Produkt montiert wird. Mängel an der Auflagefläche können eventuell die Genauigkeit des Rollon-Lineartisches negativ beeinflussen. Rollon garantiert nicht für die Einhaltung der Toleranzen der Laufparallelität im Falle von freitragenden oder nicht befestigten Tischen.

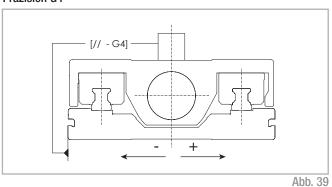
In dem Prüfzertifikat werden die Abweichungen wie in den unteren Beispielen grafisch dargestellt.

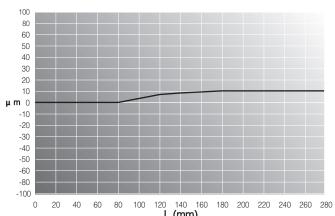

Ein entsprechendes Zertifikat liegt jeder Achse bei.


Präzision G1




Präzision G2




Präzision G3

Präzision G4

Kritische Geschwindigkeit

Die maximal erreichbare lineare Geschwindigkeit der Rollon Lineartische der TT Serie hängt von der kritischen Drehzahl der Gewindespindel (Durchmesser, Länge) und von der maximal zulässigen Drehzahl der Spindelmutter ab.

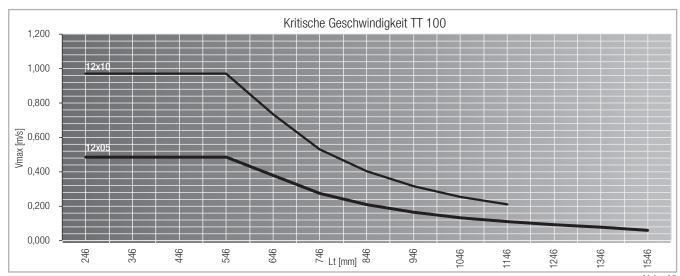


Abb. 40

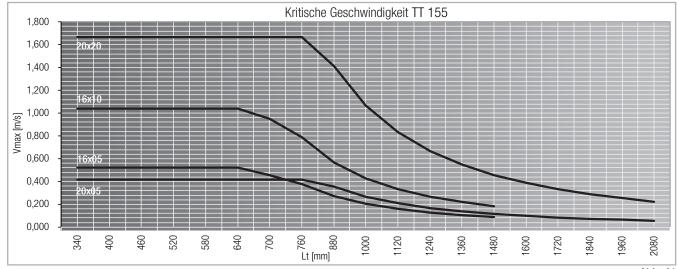


Abb. 41

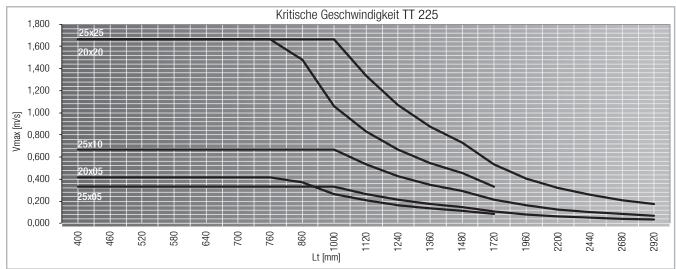


Abb. 42

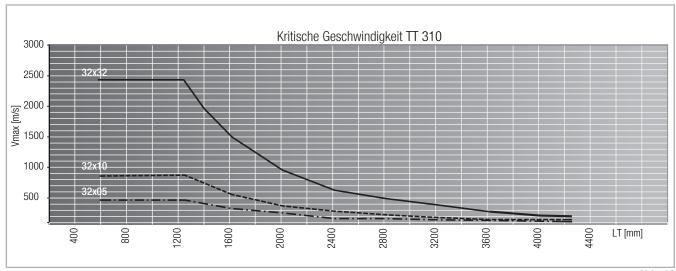


Abb. 43

Zubehör

Anbau der Motoren

Die Rollon Lineartische der TT-Serie können für den einfachen und schnellen Anbau der Motoren mit verschiedenen Motorglocken und Adapterflanschen und mit torsionssteifen Kupplungen für die Verbindung zwischen Kugelgewindetrieb und Motor geliefert werden. Die folgende Tabelle zeigt die für die jeweiligen Tische erhältlichen Motorglocken:

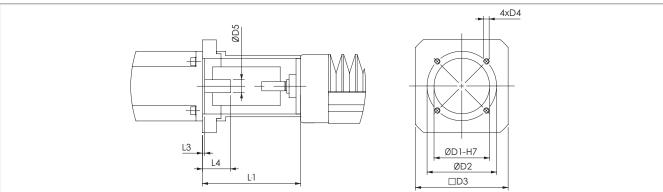
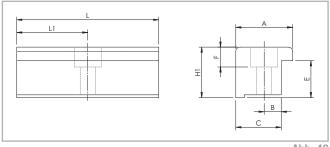



Abb. 44

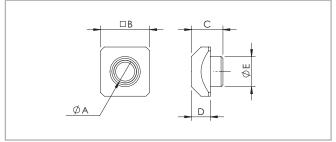
Einheit (mm)

Тур	Ø D1	Ø D2	Ø D3	D4	Ø D5		Ø D5		Lt	L3		_4	Bestell- code
					min.	max.			min.	max.	Couc		
	60	75	65	M6	5	16	68	4	25	27	G000321		
TT 100	73,1	98,4	86	M5	5	16	76,7	2	33,7	35,7	G000322		
11 100	40	64,5	65	M5	5	16	68	4	25	27	G000336		
	50	70	65	M5	5	16	77,5	3,5	34,5	36,5	G000433		
	70	85	80	M6	10	20	90	4	20	34	G000311		
	70	90	80	M5	10	20	90	5	20	34	G000312		
	80	100	90	M6	10	20	90	4	20	34	G000313		
	50	65	80	M5	10	20	90	5	20	34	G000314		
TT 155	60	75	80	M6	10	20	90	4	20	34	G000315		
	50	70	80	M5	10	20	90	5	20	34	G000316		
	73	98,4	85	M5	10	20	90	4	20	34	G000317		
	55,5	125,7	105	M6	10	20	100	5	30	44	G000318		
	60	99	85	M6	10	20	98	4	28	42	G000319		
	80	100	100	M6	10	28	106	5	30	48	G000302		
	95	115	100	M8	10	28	106	5	30	48	G000303		
	110	130	115	M8	10	28	106	5	30	48	G000304		
	60	75	100	M6	10	28	106	5	30	48	G000305		
TT 225	70	85	100	M6	10	28	106	5	30	48	G000306		
11 223	70	90	100	M5	10	28	106	5	30	48	G000307		
	50	70	96x75	M4	10	28	101	4	30	48	G000308		
	55,5	125,7	105	M6	10	28	106	5	30	48	G000309		
	73,1	98,4	96	M5	10	28	101	3	30	48	G000310		
	130	165	150	M10	10	28	106	5	30	48	G000363		
TT 310					Д	uf Nachfrag	je						


Tab. 93

Befestigung mit Spannpratzen

Тур	A Einheit (mm)	B Einheit (mm)
TT 100	112	59
TT 155	167	135
TT 225	237	200


Spannpratze

Тур	Α	В	С	Е	F	D1	D2	H1	L	L1	Bestell- code
TT 100	18,5	6	16	7	4,5	9,5	5,3	9,8	50	25	1002353
TT 155	20	6	16	11	7	9,5	5,3	15,8	50	25	1002167
TT 225	20	6	16	13	7	9,5	5,3	17,8	50	25	1002354
											Tab. 98

Abb. 46

T-Nutensteine

	_	_	_	_	_	_
	Λ	Ь	Ь		А	\neg
- 1	ц	ш	I)		4	. /

Тур	Ø A	□В	С	D	ØE	Bestellcode
TT 100	M4	8	-	3,4	-	1001046
TT 155	M5	10	6,5	4,2	6,7	1000627
TT 225	M6	13	8,3	5	8	1000043

Tab. 99

Näherungsschalter	Тур	PNP-NO	PNP-NC
	TT 100	G001981	G001980
	TT 155	G001981	G001980
	TT 225	G001981	G001980
	TT 310	/	/

~		0.1	
10	ın.	ur	

Тур	Bestellcode
TT 100	G000245
TT 155	G000244
TT 225	G000244
TT 310	/
	TT 100 TT 155 TT 225

Tab. 100

Kabelführungsset	Тур	Bestellcode
	TT 100	G000249
301	TT 155	G000248
ON.	TT 225	G000248
	TT 310	/

Tab. 96

Abschlussplatte	Тур	Bestellcode
0	TT 100	G000191
	TT 155	G000191
2// 02	TT 225	G000191
	TT 310	/

Gegenstecker-Set 9-polig, frei	Тур	Zum Krimpen	Zum Löten
	TT 100	6000516	6000589
	TT 155	6000516	6000589
6	TT 225	6000516	6000589
	TT 310	/	/

Tab. 97

Befestigungen

Die Rollon Lineartische der TT Serie sind an die Anschlusskonstruktion des Anwenders derart zu montieren, dass eine hohe Genauigkeit des Systems erreicht werden kann. Die Ebenheit der Anschlusskonstruktion bestimmt die Ablaufgenauigkeit des Lineartisches. Die Grundplatte und der Laufwagen der Rollon Lineartische weisen eine seitliche Bezugsfläche mit einer Kerbe an der Grundplatte auf (Ausnahme: TT310). In dem Laufwagen finden sich außerdem zwei Bezugsnuten im 90° Winkel, um einen präzisen Einbau als X-Y-Kreuztisch zu gewährleisten. Die Lineartische der TT-Serie

können über die Grundplatte je nach Kundenanwendung mit Schrauben von oben, (siehe Zeichnung 48), mittels Schrauben von unten über die T-Nuten (siehe Zeichnung 49), oder mit entsprechenden seitlichen Spannpratzen (siehe Zeichnung 450) befestigt werden. Für Präzisionsanwendungen empfiehlt Rollon die Montage mittels Schrauben von oben in die vorbereitete Anschlusskonstruktion. Die Abmessungen für die Befestigung der Tische finden sie in den Maßzeichnungen für die entsprechende Baugröße des Tisches.

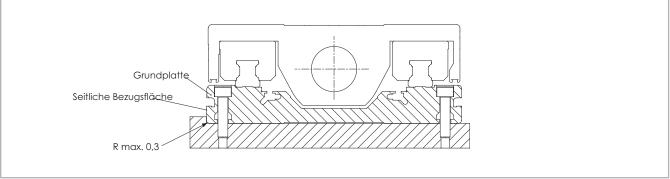


Abb. 48

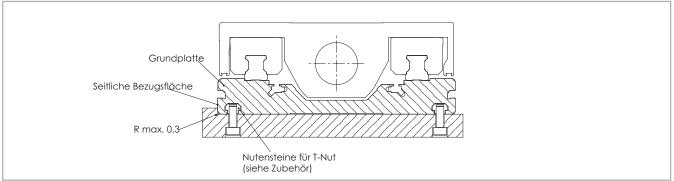


Abb. 49

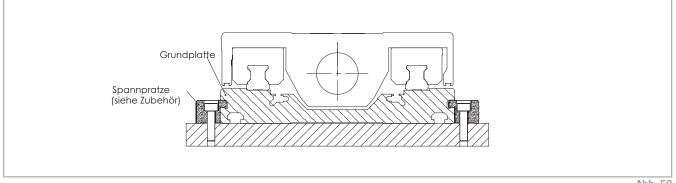
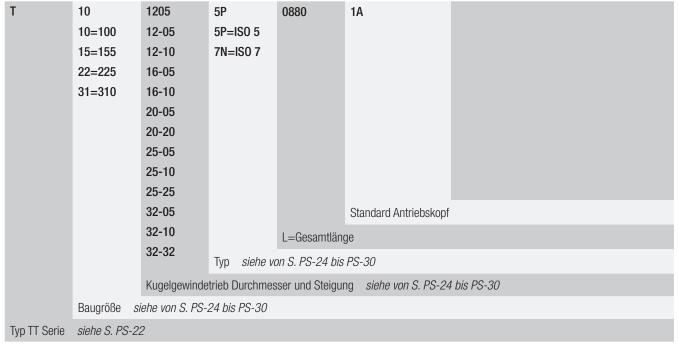



Abb. 50

Bestellschlüssel / v

Bestellbezeichnung für Linearheiten TT Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

TV Serie 🗸 🗸

Beschreibung TV Serie

Abb. 51

TV

Die Lineareinheiten der Baureihe TV verfügen über ein verwindungssteifes Profil aus eloxiertem, stranggepresstem Aluminium mit quadratischem Querschnitt (rechteckig bei der Baugröße TV 140). Die Bewegungsübertragung erfolgt durch einen Kugelgewindetrieb der Genauigkeitsklasse C5 oder C7.

Die Nutzlast wird von einer Linearführung mit doppeltem Führungswagen und einfacher Linearführung getragen (doppelter Führungswagen/doppeltes Führungssystem bei der Baugröße TV 140), die hohe Präzision und Stabilität garantiert.

Aufbau des Systems

Das Profil

Das für die Rollon Lineareinheit der TV Serie verwendete selbsttragende Profil wurde in Zusammenarbeit mit führenden Unternehmen der Branche entwickelt und gebaut, um ein Strangpresserzeugnis von höchster Präzision mit exzellenten mechanischen Eigenschaften zu erhalten. Bei dem verwendeten Material handelt es sich um die Aluminium-Legierung mit der Bezeichnung 6060. Die Maßtoleranzen entsprechen den EN 755-9. Die stranggepressten Profile sind außerdem mit seitlichen Nuten versehen, um den Montage zu erleichtern und zu beschleunigen.

Antriebssystem

Bei den Rollon Lineareinheit der TV Serie erfolgt der Antrieb über gerollte Kugelgewindetriebe. Es sind verschiedene Durchmesser und Steigungen erhältlich (siehe Tabellen der Spezifikationen). Die Standard-Präzisionsklasse ist ISO 7 mit nicht vorgespannter Spindel. Auf Nachfrage ist die Präzisionsklasse ISO 5 mit vorgespannter Spindel erhältlich.

Durch die Verwendung der Kugelumlauf-Technologie ist es möglich, folgende Leistungen zu erhalten:

- Hohe Geschwindigkeiten (mit Spindel mit großer Steigung)
- Hohe Vorschubkräfte
- Hohe Genauigkeit
- Hohe mechanische Leistung
- Geringer Verschleiß
- Geringer Verschiebewiderstand.

Laufwagen

Der Laufwagen der Rollon Lineareinheit der TV Serie ist aus eloxiertem Aluminium. Die Maße variieren je nach Modell. Der Laufwagen wird auf zwei vorgespannte Kugelumlauf-Wagen montiert, die jeweils auf einer Führungsschiene laufen.

Abdeckung

Die Rollon Lineareinheiten der TV Serie sind mit einem Abdeckband aus Stahl versehen, der die innenliegenden Bauteile (Kugelumlaufführung und -Kugelgewindetriebe) vor Einflüssen von Außen schützt. Ein Kunststoff-Deflektor drückt das Abdeckband gegen einen Magnetstreifen wodurch sich extrem geringe Abriebwerte ergeben. Bei kritischen Betriebsbedingungen können die Kugelumlaufwagen mit doppelter Frontdichtung und speziellen Abstreifern ausgestattet werden.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

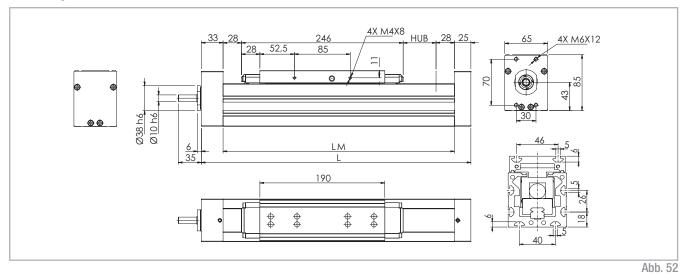
Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Physikalische Eigenschaften

Tab. 102

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655


Mechanische Eigenschaften

Tab. 103

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

TV 60

Abmessungen TV 60

Тур

TV 60

Technische Daten

	Тур
	TV 60
Maximale Hublänge [mm]	2000
Maximale Geschwindigkeit [m/s]	S. S. PS-47
Grundlänge LM [mm]	LT - 58
Gesamtlänge LT [mm]	Hub + 360
Gewicht des Laufwagens [kg]	1,41
Gewicht Hub Null [kg]	4,6
Gewicht je 100 mm Hub [kg]	0,65
Schienengröße [mm]	15

Tab. 105

Kugelgewindetrieb Präzision

Тур		oniergenau- n/300mm]	Max. Wi	ederhol- keit [mm]		
	IS0 5	ISO 7	ISO 5	IS0 7		
TV 60 / 16-05	0,023	0,05	0,01	0,05		
TV 60 / 16-10	0,023	0,05	0,01	0,05		
TV 60 / 16-16	0,023	0,05	0,01	0,05		
				Tab. 106		

TV 60 - Tragzahlen F_x

Тур	F _x ⁻¹ [N]				
	Spindel	Stat.	Dyn.		
	16-05	4551	4327		
TV 60	16-10	4551	4327		
	16-16	4551	4327		

*1 Bezogen auf die maximale axiale Belastung der Lager, nicht der Kugelumlaufspindel

Flächenträgheitsmomente der Aluminiumprofile

[10⁷ mm⁴]

0,064

[10⁷ mm⁴]

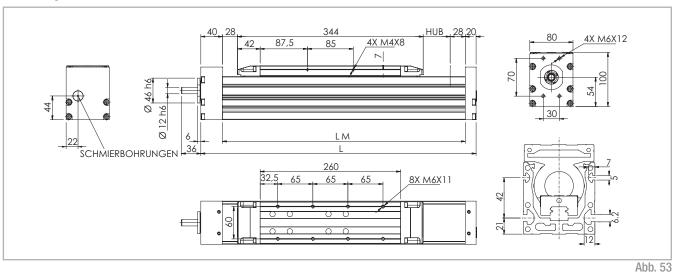
0,081

[10⁷ mm⁴]

0,145

Tab. 107

Tab. 108


Mx Mz Fz Fz

TV 60 - Tragzahlen

Тур	F [1	: ŇJ	F [1	: z V]	M _x [Nm]	М _у [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 60	35000	18000	35000	18000	286	1353	1353

V8 VT

Abmessungen TV 80

Technische Daten

	Тур
	TV 80
Maximale Hublänge [mm]	3000
Maximale Geschwindigkeit [m/s]	S. S. PS-47
Grundlänge LM [mm]	LT - 60
Gesamtlänge LT [mm]	Hub + 460
Gewicht des Laufwagens [kg]	2,5
Gewicht Hub Null [kg]	7,8
Gewicht je 100 mm Hub [kg]	0,95
Schienengröße [mm]	20

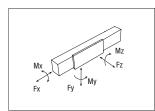
Tab. 110

Kugelgewindetrieb Präzision

Тур		oniergenau- n/300mm] ISO 7	Max. Wi genauigk ISO 5	ederhol- keit [mm] ISO 7
TV 80 / 20-05	0,023	0,05	0,01	0,05
TV 80 / 20-20	0,023	0,05	0,01	0,05
				Tab. 111

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
TV 80	0,106	0,152	0,258

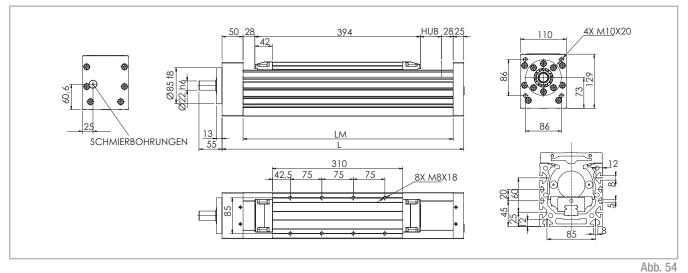

Tab. 112

TV 80 - Tragzahlen F_{χ}

Тур	F. ^M [N]				
	Spindel	Stat.	Dyn.		
TV 80	20-05	5705	4912		
10 00	20-20	5705	4912		

^{*1} Bezogen auf die maximale axiale Belastung der Lager, nicht der Kugelumlaufspindel

Tab. 113


TV 80 - Tragzahlen

Тур	F [N	, Ž	F [N	z J]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 80	59900	34200	59900	34200	646	1573	1573

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TV 110

Abmessungen TV 110

Тур

TV 110

Technische Daten

	Тур
	TV 110
Maximale Hublänge [mm]	3000
Maximale Geschwindigkeit [m/s]	S. S. PS-47
Grundlänge LM [mm]	LT - 75
Gesamtlänge LT [mm]	Hub + 525
Gewicht des Laufwagens [kg]	5,33
Gewicht Hub Null [kg]	16,8
Gewicht je 100 mm Hub [kg]	1,9
Schienengröße [mm]	25

Tab. 115

Kugelgewindetrieb Präzision

Тур	Max. Position		Max. Wi	
	ISO 5	ISO 7	ISO 5	ISO 7
TV 110 / 32-05	0,023	0,05	0,01	0,05
TV 110 / 32-10	0,023	0,05	0,01	0,05
TV 110 / 32-32	0,023	0,05	0,01	0,05
				Tab. 116

Flächenträgheitsmomente der Aluminiumprofile

[10⁷ mm⁴]

0,432

[10⁷ mm⁴]

0,594

[10⁷ mm⁴]

1,026 Tab. 117

TV 110 - Tragzahlen F _x					
Тур	F." [Ň]				
	Spindel	Stat.	Dyn.		
	32-05	11538	8947		
TV 110	32-10	11538	8947		
	32-32	11538	8947		

^{*1} Bezogen auf die maximale axiale Belastung der Lager, nicht der Kugelumlaufspindel

icht der Kugelumlaufspindel

Tab. 118

Mz

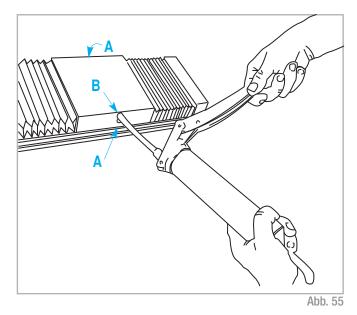
Fx

Fy

My

TV 110 - Tragzahlen

Тур	F [1	: V V	F [1	: z V]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn.	Stat.	Stat.	Stat.
TV 110	85000	49600	85000	49600	1080	2316	2316


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

Tab. 119

Schmierung

Lineareinheiten TV

Die Lineareinheiten von Rollon der Type TV sind mit kugelgelagerten Führungsschienen ausgestattet, die mit Lithiumfett der Konsistenzklasse 2 geschmiert werden. Eine Nachschmierung ist alle 3-6 Monate bzw. ca. 2000Km linearer Wegstrecke notwendig. Die Anwendungsumgebung und die aufgebrachten Lasten können die Schmierintervalle beeinflussen.

Kugelgewindetrieb

Der Kugelgewindetrieb der Rollon TV Serie sollte alle 50 Millionen Umdrehungen nachgeschmiert werden.

Lage der Schmiernippel

Die Lage der Schmiernippel ist sowohl für Kugelumlauf-Wagen als auch für Kugelgewindetriebe in der jeweiligen Zeichnung zu finden.

Empfohlene Schmiermittelmengen für die Wagen

Тур	Menge [g] pro Schmiernippel
TV 60	1,4
TV 80	2,6
TV 110	5,0

Tab. 120

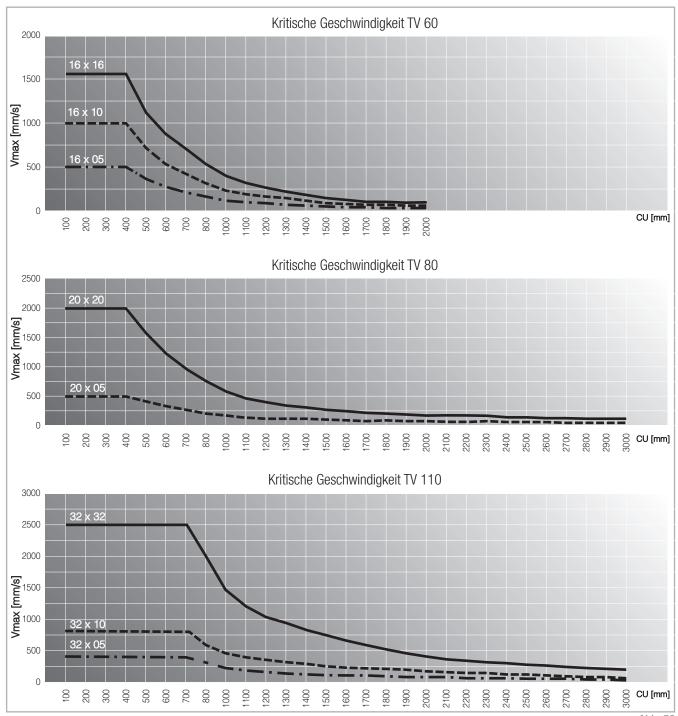
- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- A Linearführungswagen B Kugelgewindemutter
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsist enzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, großeVerschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

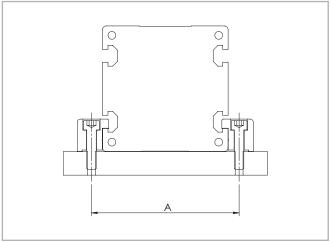
Empfohlene Schmiermittelmenge für die Schmierungder Kugelgewindetriebe.

Menge [g] pro Schmiernippel
0,6
0,8
1,0
0,9
1,7
2,3
2,8
3,7

Kritische Geschwindigkeit

Die maximal erreichbare lineare Geschwindigkeit der Rollon Lineartische der TV Serie hängt von der kritischen Geschwindigkeit des Kugelgewindetriebes (Durchmesser, Länge) und von der maximal zulässigen Drehzahl der Spindelmutter ab.




Abb. 56

Zubehör

Befestigung mit Spannpratzen

Aufgrund ihres Führungssystems können die Rollon Lineartische der TV Serie in jeder beliebigen Position eingebaut werden, da die Einheit dank der Kugelanordnung des Führungssystems Belastungen aus allen Richtungen aufnehmen kann. Für die Befestigung der Einheiten wird

empfohlen, die dafür vorbereiteten Nuten im Aluminiumprofil gemäß nachstehender Zeichnung zu nutzen:

Тур	A [mm]
TV 60	77
TV 80	94
TV 110	130

Tab. 122

Abb. 57

Achtung: Die Lineareinheiten dürfen nicht an den Köpfen an den Profilenden befestigt werden.

Spannpratze

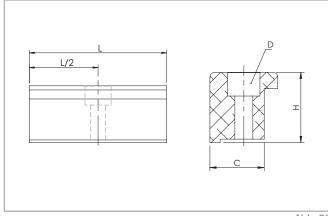


Abb. 58

Abmessungen / Einheit (mm)

Тур	С	Н	L	D	Bestellcode
TV 60	16	19,5	35	M5	1002358
TV 80	16	22,5	50	M6	1004552
TV 110	31	27	100	M10	1002360

Tab. 123

Eloxierter Aluminiumblock für die Befestigung der Lineareinheit an den seitlich im Profil angebrachten Nuten.

T-Nutenstein

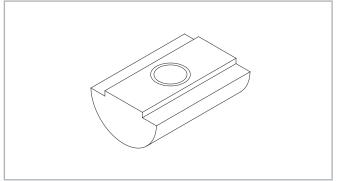


Abb. 59

Bestellcode

Nut	M5	М6	M8
5	6001038	-	-
6.2	-	6001863	-
8	-	6001044	6001045
8.2	-	1000043	-

Aus Stahl. Tab. 124

Näherungsschalter

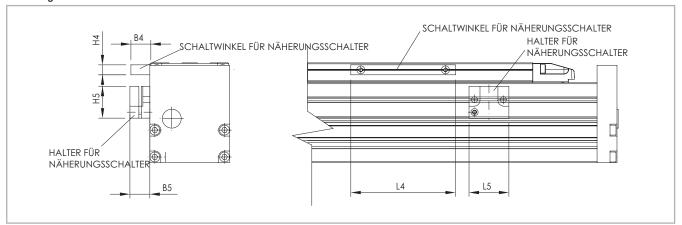


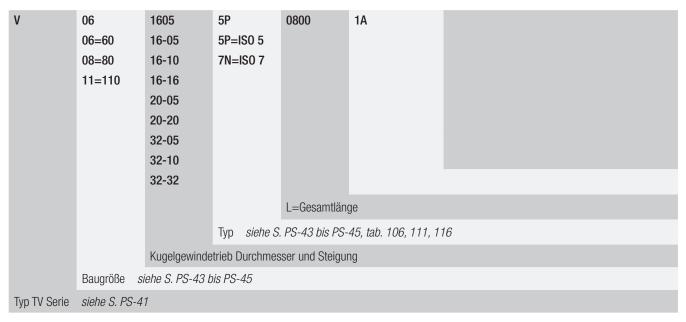
Abb. 60

Halter Näherungsschalter

Block aus eloxiertem Aluminium, rot, komplett mit "T"-Muttern für die Befestigung in den Profil-Nuten.

Schaltwinkel für Näherungsschalter

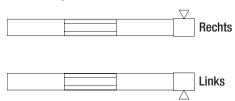
Auf dem Laufwagen montiertes Eisenblech dient zum Aktivieren des Näherungsschalters.


Einheit (mm)

Тур	B4	В5	L4	L5	H4	Н5	Sensor	Halter-Set Näherungs- schalter	Schaltwinkel- Set
TV 60	20	20	105	40	10	32	Ø12	G000849	G000581
TV 80	20	20	105	40	10	32	Ø12	G000849	G000581
TV 110	20	20	105	40	10	32	Ø12	G000850	G000581

Tab. 125

Bestellschlüssel / v


Bestellbezeichnung für Lineareinheiten TV Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

TVS Serie 🗸 🗸

Beschreibung TVS

Abb. 61

TVS

Die Lineareinheiten der Baureihe TVs verfügen über ein verwindungssteifes Profil aus eloxiertem, stranggepresstem Aluminium mit rechteckigem Querschnitt. Die Bewegungsübertragung erfolgt durch einen Kugelgewindetrieb der Genauigkeitsklasse C5 oder C7.

Die Linearbewegung erfolgt mit zwei vier vorgespannten Linearführungswagen mit Kugelkäfigtechnologie, die auf zwei präzise ausgerichteten Schienen montiert sind.

Die Baureihe TVS ist in den Größen 170 und 220 erhältlich.

Aufbau des Systems

Aluminiumprofil

Die selbstragenden Profile, die in den Lineareinheiten der Serie TVS eingesetzt werden, wurden in Zusammenarbeit mit einem Hersteller dieses Sektors konzipiert und konstruiert, sodass eloxierte Präzisions-Strangpressprofile mit hohen mechanischen Eigenschaften und hohen Flächenträgheitsmomenten realisiert werden konnten. Die Abmessungen sind entsprechend der Norm EN 755-9 toleriert. Das verwendete Material ist eloxiertes Aluminium der Legierung 6060. An den Außenseiten der Strangpressprofile befinden sich des weiteren Nuten für eine einfache und schnelle Montage und zur Befestigung von Zubehörteilen.

Antriebssystem

Bei den Rollon Lineareinheit der TVS Serie erfolgt der Antrieb über gerollte Kugelgewindetriebe. Es sind verschiedene Durchmesser und Steigungen erhältlich (siehe Tabellen der Spezifikationen). Die Standard-Präzisionsklasse ist ISO 7 mit nicht vorgespannter Spindel. Auf Nachfrage ist die Präzisionsklasse ISO 5 mit vorgespannter Spindel erhältlich. Durch die Verwendung der Kugelumlauf-Technologie ist es möglich, folgende Leistungen zu erhalten:

- Hohe Vorschubkräfte
- Hohe mechanische Leistung
- Geringer Verschleiß
- Niedriger VerschiebewiderstandLaufwagen

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Der Laufwagen der Lineareinheiten der TVS Serie besteht aus eloxiertem Aluminium.

Abdeckung

Die Rollon Lineartische der TVS Serie sind mit Faltenbälgen zum Schutz vor Verschmutzung der mechanischen und elektronischen Komponenten ausgestattet, die im Inneren des Tisches untergebracht sind.

Außerdem sind sowohl die Kugelumlaufführungen als auch die Kugelgewindetriebe mit Abstreifern bzw. Dichtungen versehen, die direkt auf die Kugellaufbahnen wirken.

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15
							Tab. 126

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°-100°C)	Spez. Widerstand	Schmelz- temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m.K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 127

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Führungssystem

Das eingesetzte Führungssystem ist maßgebend für die max. Tragzahlen, Verfahrgeschwindigkeiten und Beschleunigung.

Laufwagen

Die Laufwagen der Rollon Linearachse der TVS Serie bestehen aus eloxiertem Aluminium und bilden die Schnittstelle zwischen der Lineareinheit und der Anschlusskonstruktion des Anwenders. Zwei parallel angeordnete Profilschienen mit zwei oder vier vorgespannten Linearführungswagen sorgen für die sichere Aufnahme von hohen Kräften und hohen Lastmomenten. Die Linearführungslaufwagen sind zusätzlich mit einer Kugelkette ausgestattet. Mit dem oben beschriebenen Führungssystem werden folgende

Eigenschaften erreicht:

- Hohe Laufparallelität
- Hohe Positioniergenauigkeit
- Hohe Tragzahlen und eine hohe Steifigkeit
- Geringer Verschleiß
- Niedriger Verschiebewiderstand

TVS Querschnitt

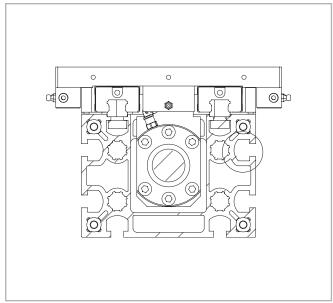
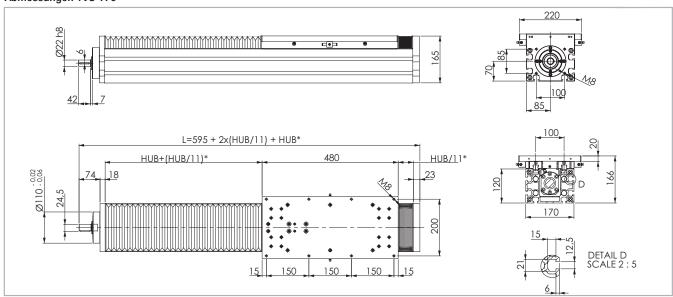



Abb. 62

TVS 170

Abmessungen TVS 170

 $^{^{\}star}$ Die genaue Gesamtlänge wird von der Rollon Technik in Abhängigkeit des Hubes berechnet.

Abb. 63

Technische Daten

	Тур
	TVS 170
Maximale Hublänge [mm]	3000
Maximale Geschwindigkeit [m/s]	S. S. PS-57
Gewicht des Laufwagens [kg]	9,9
Gewicht Hub Null [kg]	28,9
Gewicht je 100 mm Hub [kg]	2,7
Schienengröße [mm]	20

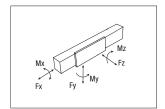
Tab. 129

Tab. 130

Kugelgewindetrieb Präzision

Тур	Max. Position keit [mm		Max. Wiederhol- genauigkeit [mm]		
	ISO 5	ISO 7	ISO 5	IS0 7	
TVS 170	0,023	0,05	0,02	0,02	

Flächenträgheitsmomente der Aluminiumprofile

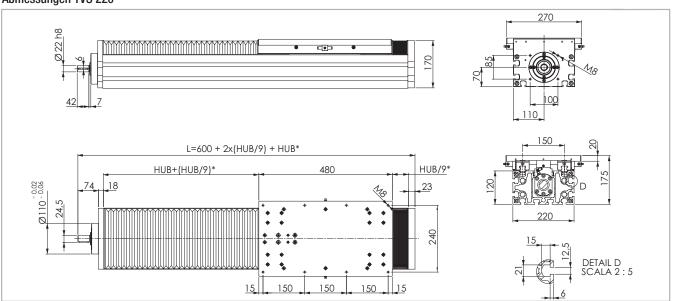

Тур	l _x	l _y	l _p
	[mm⁴]	[mm⁴]	[mm⁴]
TVS 170	19.438.900	7.986.000	27.424.900

Tab. 131

TVS 170 - Tragzahlen F_x

Тур	F _x [N]				
	Spindel	Stat.	Dyn		
	32-05	64200	25900		
TVS 170	32-10	66300	29800		
	32-20	49700	24100		
	32-32	48600	22700		
			Tob 122		

Tab. 132


TVS 170 - Tragzahlen

Тур	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
TVS 170	153600	70798	153600	7680	29184	29184

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

TVS 220

Abmessungen TVS 220

 $^{^{\}star}$ Die genaue Gesamtlänge wird von der Rollon Technik in Abhängigkeit des Hubes berechnet.

Abb. 64

[mm⁴]

106.409.500

Tab. 136

Technische Daten

	Тур
	TVS 220
Maximale Hublänge [mm]	3500
Maximale Geschwindigkeit [m/s]	S. S. PS-57
Gewicht des Laufwagens [kg]	13,3
Gewicht Hub Null [kg]	37,4
Gewicht je 100 mm Hub [kg]	3,6
Schienengröße [mm]	25

Tab. 134

Kugelgewindetrieb Präzision

Тур	Max. Positio keit [mm		Max. Wiederhol- genauigkeit [mm]			
	ISO 5	ISO 7	ISO 5	IS0 7		
TVS 220	0,023	0,05	0,02	0,02		
				Tab. 135		

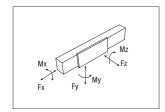
TVS 200 - Tragzahlen F_x

TVS 220

Тур

Тур	F _x [N]							
	Spindel	Stat.	Dyn					
	32-05	64200	25900					
TVC 220	32-10	66300	29800					
TVS 220	32-20	49700	24100					
	32-32	48600	22700					
			Tah 137					

Flächenträgheitsmomente der Aluminiumprofile


| |mm⁴]

93.944.000

[mm⁴]

12.465.500

Tab. 137

TVS 220 - Tragzahlen

Тур	F [N]		F _z [N]	M _x [Nm]	M _ջ [Nm]	M _z [Nm]		
	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.		
TVS 220	258800	116833	258800	19410	47360	47360		

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2f

Schmierung

TVS-Lineareinheiten mit Kugelumlaufführungen

In den Rollon Lineartischen der TVS Serie werden wartungsarme Kugelumlaufführungen eingesetzt. In den Linearführungswagen werden die Wälzkörper in einer Kunststoffkette gehalten, die die metallische Reibung zwischen den Kugeln verhindert und die sie auf ihrer Bahn durch die Kugelumläufe führt. Dadurch wird der Verschleiß der Kugeln verringert und

folglich die Lebensdauer erhöht. Mit dem oben beschriebenen Führungssystem können je nach Belastung und Anwendungsart Laufleistungen von 2000 km ohne Nachschmierung erreicht werden. Für eine genaue Prüfung nehmen Sie bitte Kontakt mit Rollon auf.

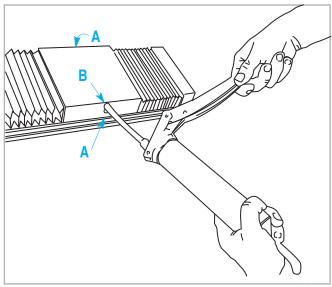


Abb. 65

Kugelgewindetrieb

Der Kugelgewindetrieb der Rollon TVS Serie sollte alle 50 Millionen Umdrehungen nachgeschmiert werden.

Standardschmierung

Über Schmiernippel an der Wagenseite der Rollon Lineartische der TVS Serie gelangt man zu den Kugelumlaufwagen und separat davon zur Kugelgewindetriebmutter. Die Lineartische sind mit Lithiumseifenfett der Klasse NLGI 2 zu schmieren.

- Adapter der Schmierpumpe auf Schmiernippel am Laufwagens aufstecken und entsprechende Nachschmiermenge je Schmieranschluß einfüllen.
- A Linearführungswagen B Kugelgewindemutter
- Zu verwendender Schmierstoff: Lithiumverseiftes Fett der Konsist enzklasse NLGI 2.
- Bei besonderen Bedingungen (hohe Belastungen, große Verschmutzungen, etc.) bitte Nachschmierintervalle und Schmierstoff vom Hersteller bestimmen lassen. Für weitere ausführliche Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Nachschmiermenge (je Schmieranschluß):

Тур	Menge [cm³] pro Schmiernippel
TVS 170	0,7
TVS 220	1,4
	Tob. 120

Tab. 139

Nachschmiermenge für den Kugelgewindetrieb

Тур	Menge [cm³] pro Schmiernippel
32-05	1,8
32-10	2,0
32-20	2,0
32-32	3,0

Tab. 140

Kritische Geschwindigkeit

Die maximal erreichbare lineare Geschwindigkeit der Rollon Lineartische der TVS Serie hängt von der kritischen Drehzahl der Gewindespindel (Durchmesser, Länge) und von der maximal zulässigen Drehzahl der Spindelmutter ab.

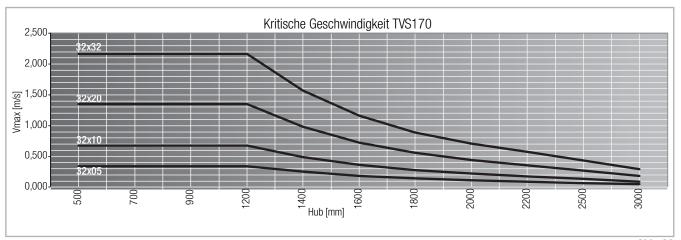


Abb. 66

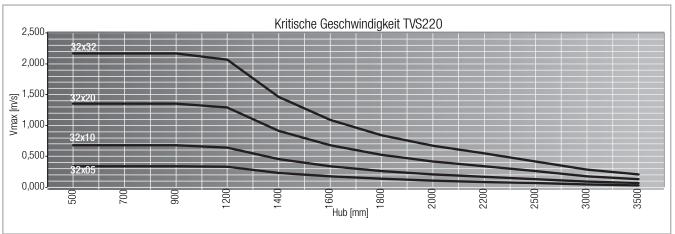
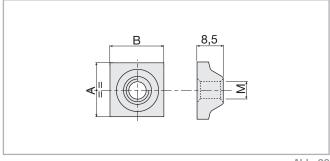


Abb. 67

Zubehör

Halbrunde Gewindeeinsätze mit Feder


Material: Verzinkter Stahl

Wichtig: Die Einsätze müssen vor der Montage in die Längsnuten

eingefügt werden.

Geeignet für die Baureihen:

TVS 170 - TVS 220

Kunststoffverbundfeder für die vertikale Positionierung des Einsatzes.

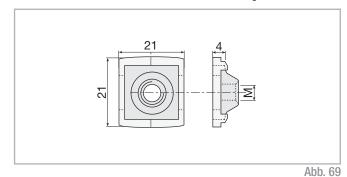
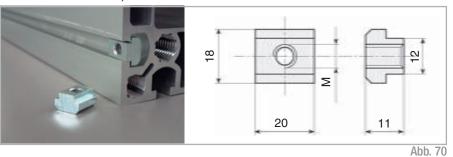


Abb. 68

Gewinde	АхВ						
	18x18	20x20					
M4	209.0031	209.0023					
M5	209.0032	209.0019					
M6	209.0033	209.1202					
M8	209.0034	209.0467					

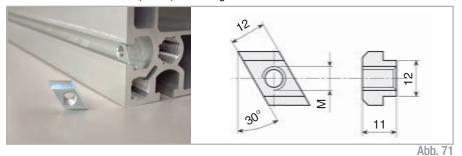

Tab. 141

Feder	Bestellcode
Für alle Einsätze geeignet 18x18	101.0732

Tab. 142

T-Nutensteine

T-Nutensteine für Nut 12,5 mm

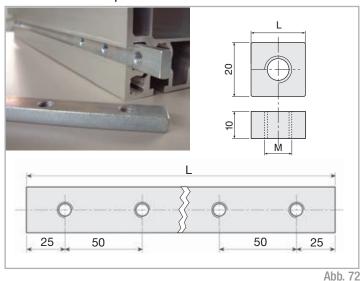

Material: Verzinkter Stahl.

Geeignet für die Baureihen: TVS 170 - TVS 220

Gewinde	Code
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Tab. 143

Hammermuttern für Nut 12,5 mm, stirnseitig einsetzbar



Material: Verzinkter Stahl. Geeignet für die Baureihen: **TVS 170 - TVS 220**

Gewinde	Code
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Tab. 144

Gewindemuttern und -platten

In Profilen mit 12,5 mm-Nuten können sechskantschrauben M12 (CH19) als Hammerschraube verwendet werden.

Material: Verzinkter Stahl. Geeignet für die Baureihen:

TVS 170 - TVS 220

Gewinde	n-Bohrungen	L	Code			
M10	1	40	215.0477			
M12	1	40	209.1281			
M10	1	20	209.1277			
M10	2*	80	209.1776			
M10	3*	150	209.1777			
M10	4*	200	209.1778			
M10	5*	250	209.1779			
M10	6*	300	209.1780			
M10	7*	350	209.1781			

* Loch-Mittenabstand: 50 mm. Tab. 145

Spannpratzen

Material: Aluminiumlegierung (Rs=310 N/mm²).

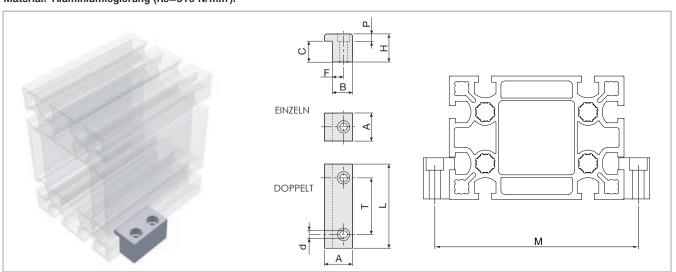
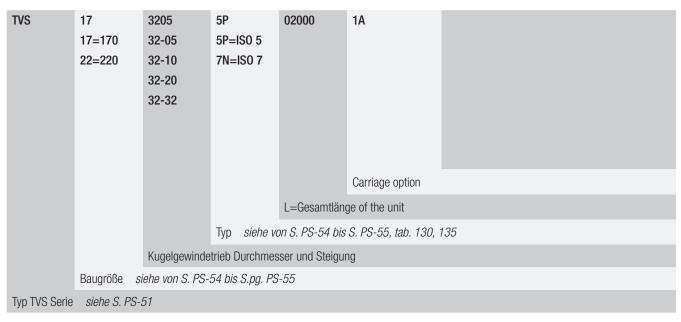
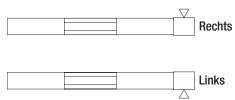



Abb. 73

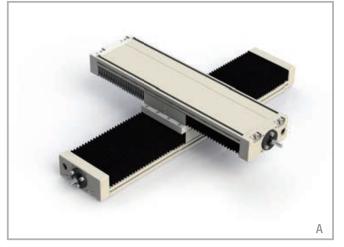
Profil	А	L	T	d	Н	Р	С	F	В	M	Einzelcode	Doppelter Code
TVS 170	30	90	50	11	40	11	28,3	14	25	198	415.0767	415.0762
TVS 220	30	90	50	11	40	11	28,3	14	25	248	415.0767	415.0762

Bestellschlüssel / ~

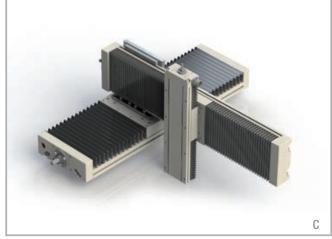

Bestellbezeichnung für Linearheiten TVS Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

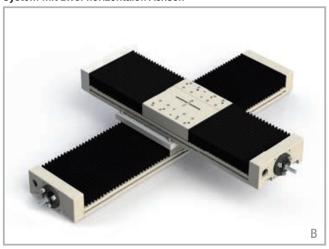
Ausrichtung Links/Rechts


Mehrachsensysteme

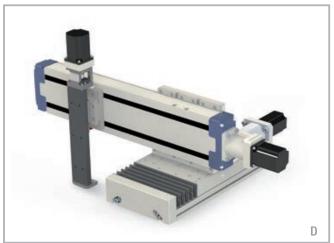
Die Rollon Lineartische der Precision System Serie wurden speziell kombinierbar entwickelt, um auf extrem einfache Weise und besonders schnell Mehrachsensysteme herzustellen. Rollon kann alle für die Kombination der einzelnen Größen und Längen der Lineart-


ische der Precision System Serie erforderlichen Verbindungselemente liefern.

System mit zwei horizontalen Achsen

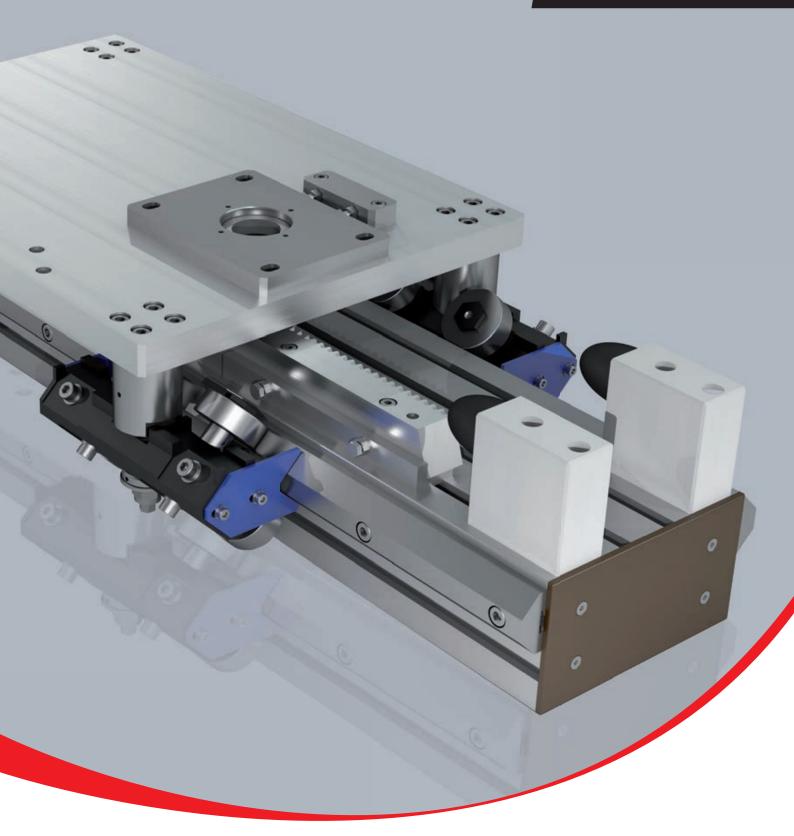

A - Befestigung der Y-Achse auf der X-Achse (Montage "Grundplatte auf Wagen") direkt mit Schrauben ohne Verwendung von Spannpratzen.

Drei-Achsen-System


C - Befestigung der Y-Achse auf der X-Achse (Montage "Grundplatte (auf Kante) auf Wagen") mit 90° Verbindungselement. Befestigung der Z-Achse an der Y-Achse (Montage "Wagen auf Wagen") "über Kreuz" mit Verbindungsplatte.

System mit zwei horizontalen Achsen

B - Befestigung der Y-Achse auf der X-Achse (Montage "Wagen auf Wagen") "über Kreuz" mit einer Verbindungsplatte.


Drei-Achsen-System

D - Befestigung der Y-Achse auf der X-Achse (Montage "Grundplatte (auf Kante) auf Wagen") mit 90° Verbindungselement. Befestigung

Tecline

PAR/PAS Serie / ~

Beschreibung PAR/PAS

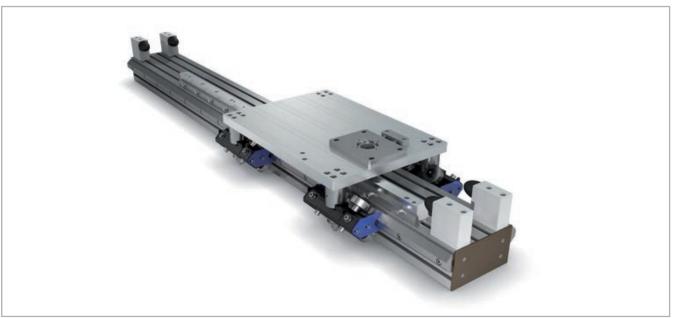


Abb. 1

Bei den Produkten der Baureihe Tecline handelt es sich um Linearachsen aus selbsttragendem Aluminium mit Zahnstangenantrieb. Sie wurden für mehrachsige Lösungen im Rahmen zahlreicher Anwendungen wie Pick & Place, Bestückung von Industriemaschinen und Logistik entwickelt und können Lasten bis 2.000 kg tragen.

Die Linearschienen der Baureihen PAR/PAS sind mit Profilen in verschiedenen Größen erhältlich: 118 - 140 - 170 - 200 - 220 - 230 - 280 - 360 mm.

Vorteile der PAR/PAS Serie:

- Einfache und schnelle Montage.
- Hohe Qualität und wettbewerbsfähige Performance.
- Reduzierte und vereinfachte Wartung.
- Ein breites Angebot an integrierten Lösungen.
- Kundenspezifische Lösungen.
- Hübe bis 10,8 m Länge, hohe Torsionssteifigkeit, präzise Form. Größere Längen können durch miteinander verbundene Ausführungen erhalten werden.
- Präzise Bearbeitung aller Profile.

PAR

Bei der Baureihe PAR dienen prismatische Schienen als Komponenten für die Linearbewegung.

PAS

Bei der Baureihe PAS dienen Kugelumlaufführungen mit Kugelkette als Komponenten für die Linearbewegung.

Aufbau des Systems

Strangpressprofil

Die Baureihe PAR/PAS umfasst Rollon-Profile aus einer stranggepressten, eloxierten und gehärteten Aluminiumlegierung mit Toleranzwerten gemäß UNI EN 755-9. Die Profile wurden von Rollon speziell zur Schaffung steifer und leichter Strukturen geschaffen, um Maschinen für die Linearbewegung herzustellen.

Antrieb mit Zahnstange und Ritzel

Die Baureihe PAR/PAS wird mit einem System aus Zahnstange und Ritzel mit gehärteten Zähnen angetrieben, das einen Hub bis zu 10,8 m ermöglicht. Größere Längen können durch miteinander verbundene Ausführungen erhalten werden. Zahnstangen mit schräger Verzahnung aus induktionsgehärtetem Stahl sind mit drei verschiedenen Modulen erhältlich: M2, M3 und M4. Die Linearachsen der Baureihe PAR/PAS werden aus

geschliffenen, induktionsgehärteten Zahnstangen KSD mit Ritzeln aus vergütetem Hochleistungsstahl (RD) mit Oberflächenhärtung hergestellt. Hochleistungs-Zahnstangen KRD sind auf Anfrage erhältlich (Rs>900 MPa). Diese sind vergütet, induktionsgehärtet und vollständig geschliffen. Mit RD-Ritzeln und KRD-Zahnstangen sowie mit Hilfe einer kontinuierlichen Schmierung können Geschwindigkeiten von bis zu 5 m/s erreicht werden.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe PAR/PAS besteht aus eloxiertem Aluminium. Entsprechend den unterschiedlichen Größen sind Laufwagen in verschiedenen Längen erhältlich.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

	Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Ī	Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10 ⁻⁶	W	J		
					Ω . m . 10 $^{ ext{-9}}$	°C
dm ³	mm²	K	m . K	kg . K		
2,70	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

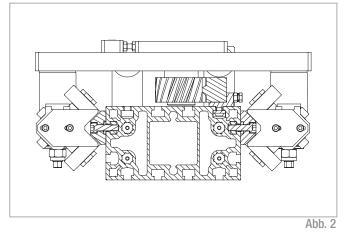
PAR mit Prismatic Rail:

Die Schienen des Systems "Prismatic Rail" bestehen aus speziell behandeltem Kohlenstoffstahl und sind mit einer Lebensdauerschmierung ausgestattet. Dank dieser Lösung eignet sich PAR speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung.

- Die prismatischen Schienen mit hoher Belastbarkeit sind in einem eigenen Sitz im Aluminiumgehäuse untergebracht.
- Der Laufwagen ist mit einer Vorspannung versehen, um Belastungen in den vier Hauptrichtungen zu widerstehen.
- Gehärtete und geschliffene Führungsschienen aus Stahl.
- Die Läufer sind mit Filzelementen zur Selbstschmierung ausgestattet.

Merkmale des beschriebenen linearen Bewegungssystems:

- Geeignet für schmutzige Umgebungen
- Hohe Geschwindigkeit und Beschleunigung
- wartungsarm
- Hohe Tragzahlen
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung


PAS mit Kugelumlauflinearführungen

Die bei PAS verwendeten Kugelumlaufführungen sind ein System mit Kugelkette. Die Kugelkette dient zwei Zwecken: Er reduziert die Reibung zwischen der Führung und dem Läufer, wodurch die Lebensdauer erhöht wird, und er ermöglicht längere Schmierintervalle. Dank der Kugelkette, der die Kugeln getrennt hält, erreichen die Einheiten ein wesentlich längeres Nachtschmierintervall die erste Wartung ist erst bei 2000 km notwendig.

Merkmale des beschriebenen linearen Bewegungssystems:

- Hohe zulässige momente
- Hohe Bewegungsgenauigkeit
- Hohe Geschwindigkeit und Beschleunigung
- Hohe Tragzahlen
- Hohe Steifigkeit
- Geringe Reibung
- Lange Lebensdauer
- Geringe Geräuschentwicklung

PAR

PAS

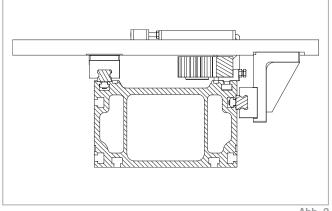
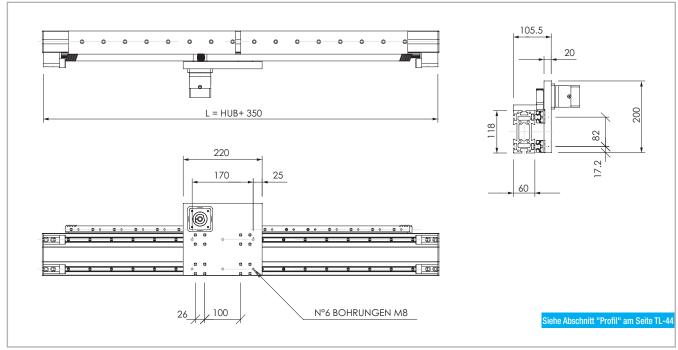



Abb. 3

PAS 118

Abmessungen PAS 118

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

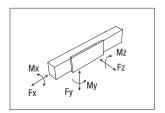
Abb. 4

Technische Daten

	Тур
	PAS 118
Maximale Hublänge [mm]*1	9550
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	5
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	38,2
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	120
Gewicht des Laufwagens [kg]	3,5
Gewicht Hub Null [kg]	11
Gewicht je 100 mm Hub [kg]	1,9
Schienengröße [mm]	15
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werder	n. Tab.

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x	l _y	lր	
	[mm⁴]	[mm⁴]	[mm⁴]	
PAS 118	4.322.574	1.011.437	5.334.011	

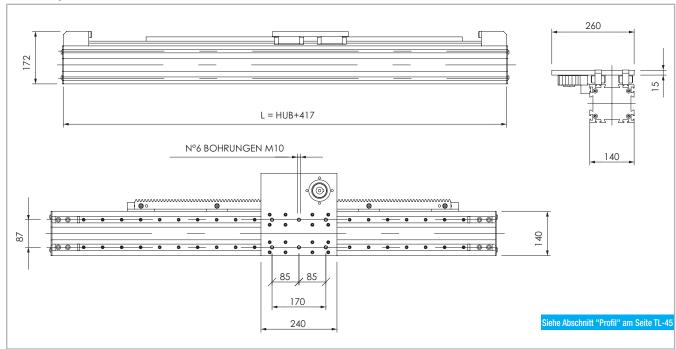
Tab. 5

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 118	Schrägverzahnung, gehärtet, geschliffen	m 2	Q6

Tab. 6

PAS 118 - Tragzahlen


Тур	F _x [N]	F. [N	j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 118	1814	96800	45082	96800	3969	6098	6098

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

PAS 140

80 Kg Hohe Taktrate Niedrige Taktrate ■ 160 Kg

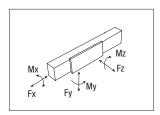
Abmessungen PAS 140

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 5

Technische Daten

	Тур
	PAS 140
Maximale Hublänge [mm]*1	7100
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	4
Maximale Beschleunigung [m/s²]	5
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	63,66
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200
Gewicht des Laufwagens [kg]	5
Gewicht Hub Null [kg]	15
Gewicht je 100 mm Hub [kg]	2,6
Schienengröße [mm]	20


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

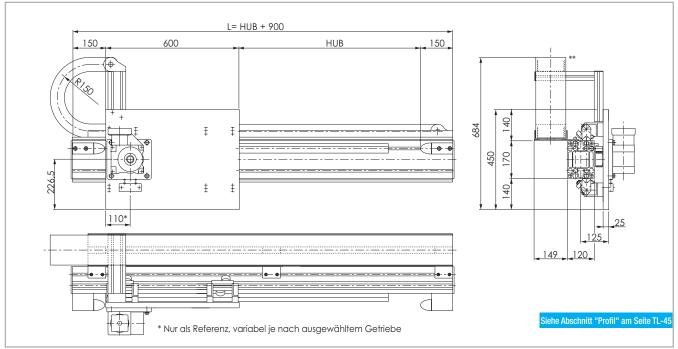
Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAS 140	11.482.500	8.919.600	20.402.100
			Tab. 9

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 140	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6
			Tab. 10

PAS 140 - Tragzahlen


Тур	F _x [N]	F, [N	/ j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 140	5714	201200	89212	201200	8752	13581	13581

Tab. 8

PAR 170

80 Kg Hohe Taktrate Niedrige Taktrate ■ 250 Kg

Abmessungen PAR 170

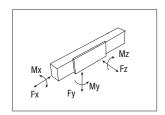
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Abb. 6

Technische Daten

	Тур
	PAR 170
Maximale Hublänge [mm]*1	11100
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3,5
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)
Gewicht des Laufwagens [kg]	29
Gewicht Hub Null [kg]	59
Gewicht je 100 mm Hub [kg]	3,1
Schienengröße [mm]	35x16
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 12

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAR 170	19.734.283	9.835.781	29.570.064
			Tah 13

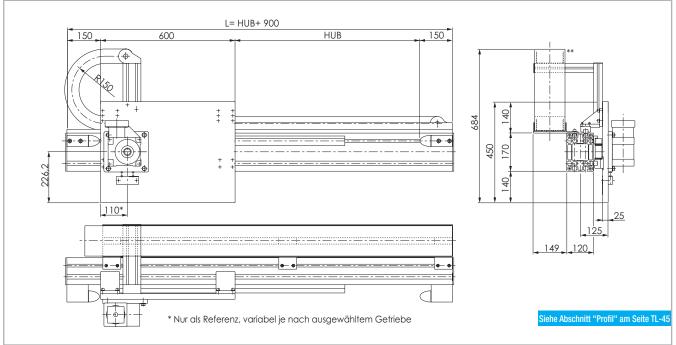
Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 170	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6

Tab. 14

PAR 170 - Tragzahlen

Тур	F _x [N]	F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 170	5714	14142	65928	14142	1202	3076	3076


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAS 170

80 Kg Hohe Taktrate Niedrige Taktrate ■ 250 Kg

Abmessungen PAS 170

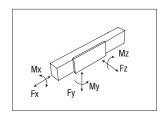
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 170
Maximale Hublänge [mm]*1	11100
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3,5
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)
Gewicht des Laufwagens [kg]	29
Gewicht Hub Null [kg]	57
Gewicht je 100 mm Hub [kg]	2,9
Schienengröße [mm]	20
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 1 6

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Flächenträgheitsmomente der Aluminiumprofile

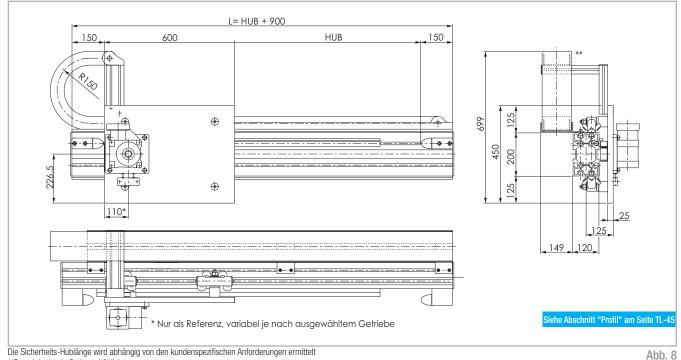

Тур	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[mm⁴]
PAS 170	19.734.283	9.835.781	29.570.064

Tab. 17

Abb. 7

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 170	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6
			Tab. 18



PAS 170 - Tragzahlen

Тур	F _x [N]	F _.	y []	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	DYN.	Stat.	Stat.	Stat.	Stat.
PAS 170	5714	153600	70798	153600	10368	39552	39552

PAR 200

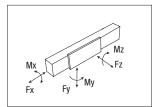
Abmessungen PAR 200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Тур
	PAR 200
Maximale Hublänge [mm]*1	11100
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	7
Zahnstangen-Modul	m 3
Pulley pitch diameter [mm]	63,66 (89,13)
Carriage displacement per pulley turn [mm]	200 (280)
Gewicht des Laufwagens [kg]	36
Gewicht Hub Null [kg]	70
Gewicht je 100 mm Hub [kg]	3,5
Schienengröße [mm]	35x16
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werder	n. Tab. 20

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAR 200	32.697.979	12.893.004	45.860.983
			Tab. 21

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 200	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6

Tab. 22

PAR 200 - Tragzahlen

Тур	F _x [N]	F. [N	j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 200	5714	14142	65928	14142	1414	3536	3536

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{**}Energiekette als Option erhältlich

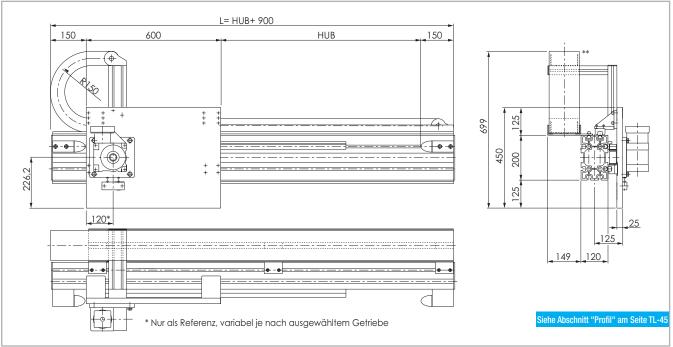

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Abb. 9

PAS 200

100 Kg Hohe Taktrate Niedrige Taktrate 300 Kg

Abmessungen PAS 200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 200
Maximale Hublänge [mm]*1	11100
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	7
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)
Gewicht des Laufwagens [kg]	36
Gewicht Hub Null [kg]	68
Gewicht je 100 mm Hub [kg]	3,3
Schienengröße [mm]	20
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werder	Tab. 24

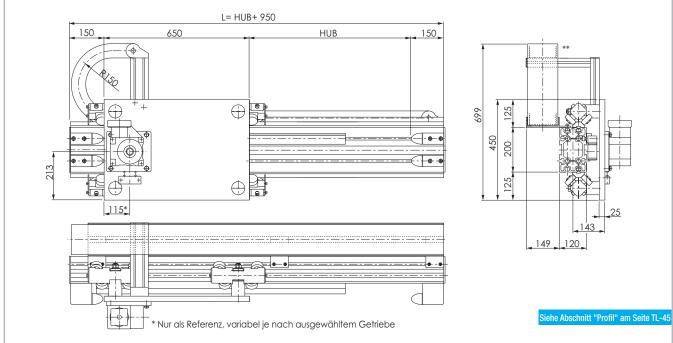
^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAS 200	32.697.979	12.893.004	45.860.983
			Tab. 25

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS200	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6
			Tab. 26


PAS 200-20 - Tragzahlen

Тур	F _x [N]	F [N	y ij	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 200	5714	153600	70798	153600	11520	39552	39552

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

PAR 200P

Abmessungen PAR 200P

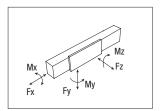
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAR 200P	32.697.979	12.893.004	45.860.983
			Tab. 29

Technische Daten

	Тур
	PAR 200P
Maximale Hublänge [mm]*1	11050
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	7
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	48
Gewicht Hub Null [kg]	96
Gewicht je 100 mm Hub [kg]	4,8
Schienengröße [mm]	55x25


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Spezifikationen der Zahnstangen

•	•		
Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 200P	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6
			Tab 20

Tab. 30

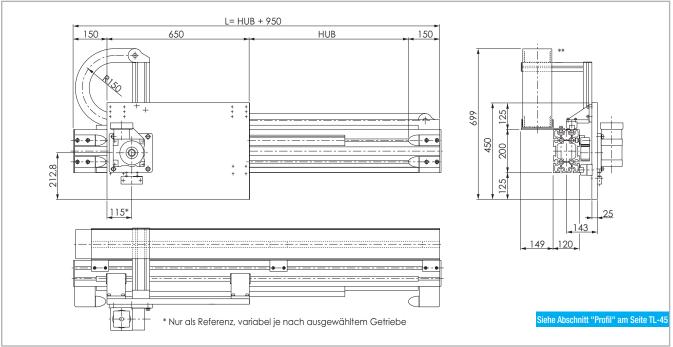
Abb. 10

PAR 200P - Tragzahlen

Тур	F _x [N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 200P	10989	24042	112593	24042	2404	6611	6611

Tab. 28

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAS 200P

100 Kg Hohe Taktrate Niedrige Taktrate ■ 400 Kg

Abmessungen PAS 200P

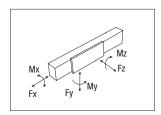
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 200P
Maximale Hublänge [mm]*1	11050
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	7
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	38
Gewicht Hub Null [kg]	80
Gewicht je 100 mm Hub [kg]	4,0
Schienengröße [mm]	25
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	^{n.} Tab. 32

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

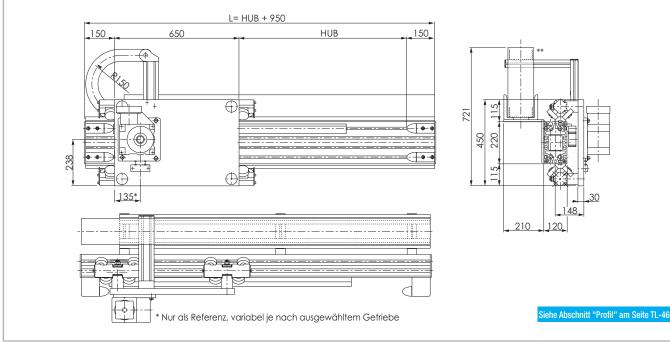

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAS 200P	32.697.979	12.893.004	45.860.983
			Tab. 33

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 200P	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 34

Abb. 11


PAS 200P - Tragzahlen

Тур	F _x [N]	F [N	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 200P	10989	258800	116833	258800	19410	73111	73111

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAR 220

Abmessungen PAR 220

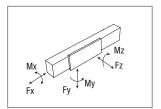
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Тур
	PAR 220
Maximale Hublänge [mm]*1	11050
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	6
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	54
Gewicht Hub Null [kg]	106
Gewicht je 100 mm Hub [kg]	5,2
Schienengröße [mm]	55x25
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werder	Tab. 36

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAR 220	46.248.422	15.591.381	61.839.803
			Tab. 37

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 220	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 38

Abb. 12

PAR 220 - Tragzahlen

Тур	F _x [N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 220	10989	29981	149063	29981	3298	8425	8425

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{**}Energiekette als Option erhältlich

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

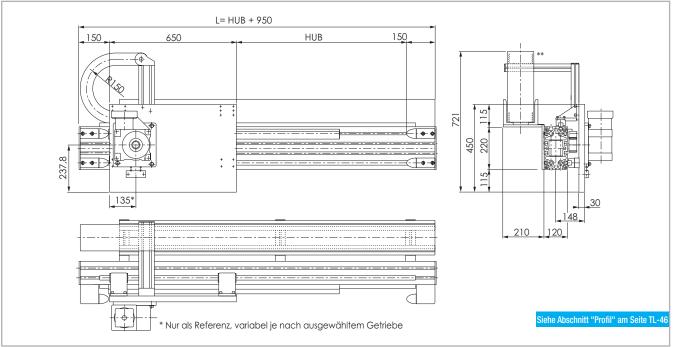

■ 500 Kg

Abb. 13

PAS 220

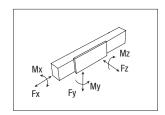
250 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAS 220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt
**Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 220
Maximale Hublänge [mm]*1	11050
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	6
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	44
Gewicht Hub Null [kg]	99
Gewicht je 100 mm Hub [kg]	4,4
Schienengröße [mm]	25
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 40

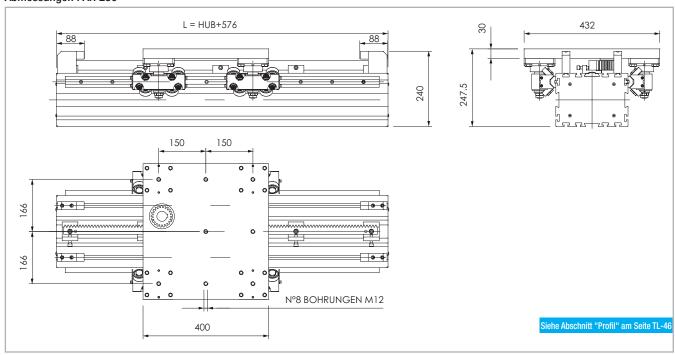

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAS 220	46.248.422	15.591.381	61.839.803
			Tab. 41

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 220	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6
			Tab. 42


PAS 220 - Tragzahlen

Тур	F _x [N]	F [N	; V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 220	10989	258800	116833	258800	23939	73111	73111

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAR 230

Abmessungen PAR 230

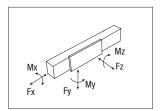
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 14

Technische Daten

	Тур
	PAR 230
Maximale Hublänge [mm]*1	11400
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	6
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	(89,13) 63,66
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	(280) 200
Gewicht des Laufwagens [kg]	25
Gewicht Hub Null [kg]	50
Gewicht je 100 mm Hub [kg]	4
Schienengröße [mm]	35x16
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 44

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]
PAR 230	65.009.000	37.783.000	102.792.000
			Tab. 45

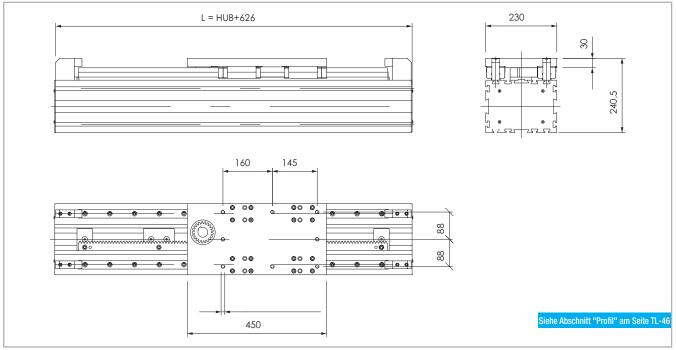
Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 230	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6

Tab. 46

PAR 230 - Tragzahlen

Тур	F _x [N]	F _y [N		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 230	5714	14142	65928	14142	1626	2121	2121


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAS 230

280 Kg Hohe Taktrate Niedrige Taktrate 580 Kg

Abmessungen PAS 230

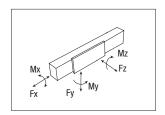
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 15

Technische Daten

	Тур
	PAS 230
Maximale Hublänge [mm]*1	11350
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	5
Zahnstangen-Modul	m 3
Teilkreisdurchmesser des Ritzels [mm]	63,66
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200
Gewicht des Laufwagens [kg]	12,5
Gewicht Hub Null [kg]	41
Gewicht je 100 mm Hub [kg]	4,35
Schienengröße [mm]	30

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

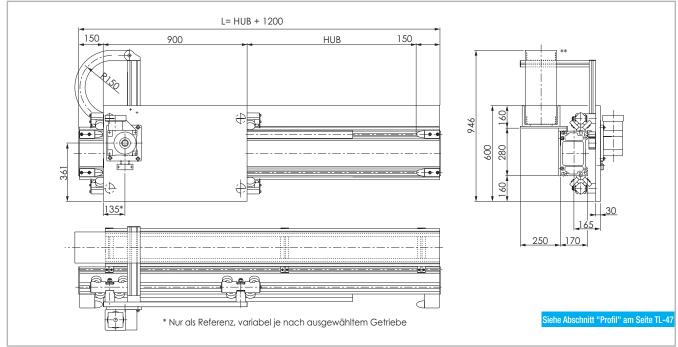
Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAS 230	65.009.000	37.783.000	102.792.000
			Tab. 49

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 230	Schrägverzahnung, gehärtet, geschliffen	m 3	Q6

Tab. 50

PAS 230 - Tragzahlen


Тур	F _x [N]	F, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 230	5714	355200	172074	355200	29304	35520	35520

Tab. 48

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAR 280

Abmessungen PAR 280

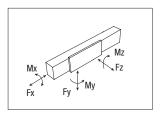
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 16

Technische Daten

	Тур
	PAR 280
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	4
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	79
Gewicht Hub Null [kg]	164
Gewicht je 100 mm Hub [kg]	6,6
Schienengröße [mm]	55x25
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 52

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAR 280	126.456.800	48.292.512	174.749.312
			Tab. 53

Spezifikationen der Zahnstangen

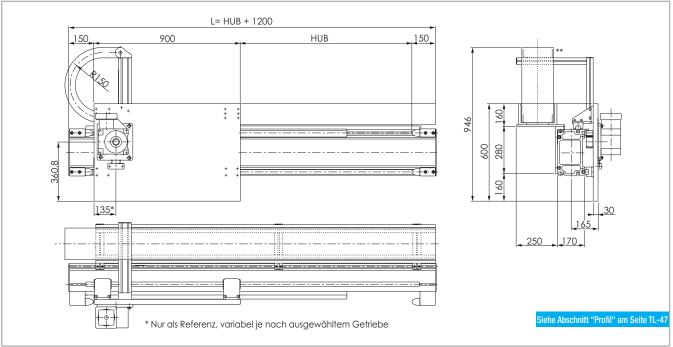
Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 280	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 54

PAR 280 - Tragzahlen

Тур	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280	10989	29981	149063	29981	4197	12307	12307

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAS 280

300 Kg Hohe Taktrate Niedrige Taktrate ■ 600 Kg

Abmessungen PAS 280

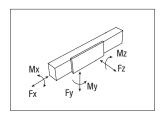
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 280
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,05
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	5
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	69
Gewicht Hub Null [kg]	149
Gewicht je 100 mm Hub [kg]	6,0
Schienengröße [mm]	30
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 56

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Flächenträgheitsmomente der Aluminiumprofile

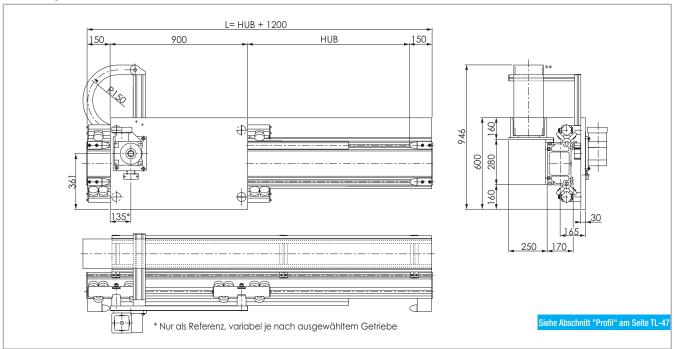

Тур		l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAS 28	0	126.456.800	48.292.512	174.749.312
				Tab. 57

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 280	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 58

Abb. 17


PAS 280 - Tragzahlen

Тур	F _x [N]	F [N	y I	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280	10989	266400	142231	266400	34632	106560	106560

PAR 280P

300 Kg Hohe Taktrate Niedrige Taktrate ■ 800 Kg

Abmessungen PAR 280P

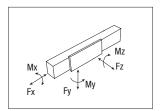
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 18

Technische Daten

	Тур
	PAR 280P
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	2,5
Maximale Beschleunigung [m/s²]	2
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	88
Gewicht Hub Null [kg]	173
Gewicht je 100 mm Hub [kg]	6,6
Schienengröße [mm]	55x25
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 60

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
PAR 280P	126.456.800	48.292.512	174.749.312
			Tah 61

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 280P	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 62

PAR 280P - Tragzahlen

Тур	F _x [N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 280P	10989	29981	149063	29981	8395	11108	11108

^{**}Energiekette als Option erhältlich

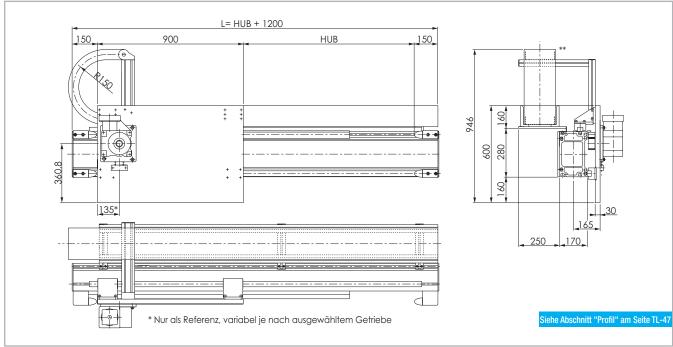

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

Abb. 19

PAS 280P

300 Kg ■ 800 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAS 280P

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt
**Energiekette als Option erhältlich

Technische Daten

	Тур
	PAS 280P
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	2,5
Maximale Beschleunigung [m/s²]	2
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	76
Gewicht Hub Null [kg]	159
Gewicht je 100 mm Hub [kg]	6,4
Schienengröße [mm]	35
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 64

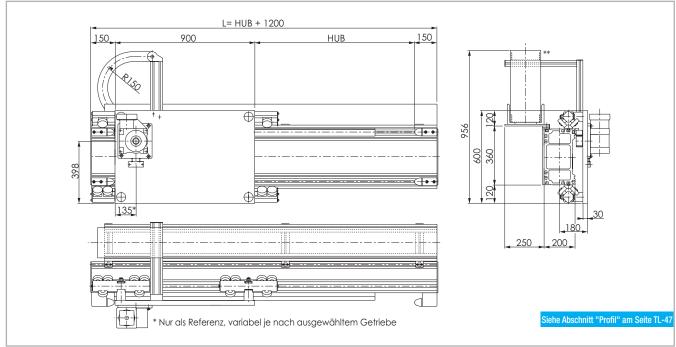
^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAS 280P	126.456.800	48.292.512	174.749.312
			Tab. 65

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 280P	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6
			Tab. 66


PAS 280P - Tragzahlen

Тур	F _x [N]	F _. [N	j j	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 280P	10989	386400	197790	386400	50232	150310	150310

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAR 360

Abmessungen PAR 360

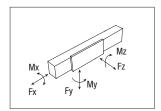
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 20

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAR 360	317.212.806	103.285.258	420.498.064
			Tab. 69

Flächenträgheitsmomente der Aluminiumprofile

Technische Daten


	Тур
	PAR 360
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	2,5
Maximale Beschleunigung [m/s²]	2
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	88
Gewicht Hub Null [kg]	196
Gewicht je 100 mm Hub [kg]	8,5
Schienengröße [mm]	55x25

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart .

Spezifikationen der Zahnstangen

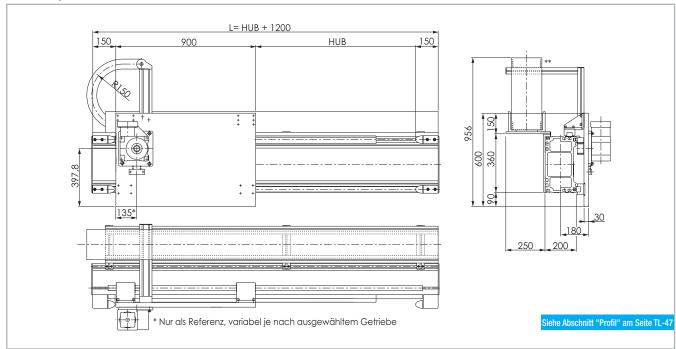
Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAR 360	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 70

PAR 360 - Tragzahlen

Тур	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAR 360	10989	29981	149063	29981	10793	11108	11108

Tab. 68


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{**}Energiekette als Option erhältlich

PAS 360

500 Kg 1000 Kg

Abmessungen PAS 360

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Тур	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
PAS 360	317.212.806	103.285.258	420.498.064
			Tab. 73

Flächenträgheitsmomente der Aluminiumprofile

Spezifikationen der Zahnstangen

Тур	Typ des Zahnstange	Zahn- stangen- Modul	Qualität
PAS 360	Schrägverzahnung, gehärtet, geschliffen	m 4	Q6

Tab. 74

Abb. 21

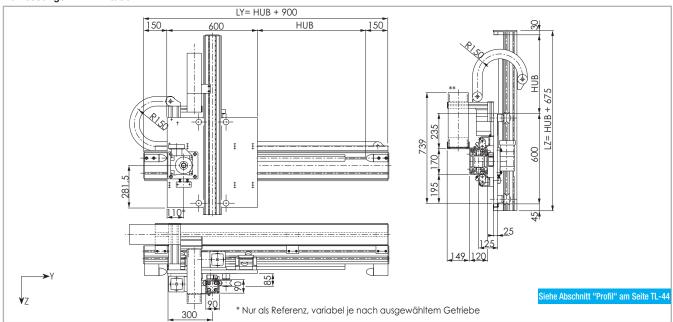
Mx Mz Fz Fy My

Technische Daten

	Тур
	PAS 360
Maximale Hublänge [mm]*1	10800
Max. Wiederholgenauigkeit [mm]*2	± 0,1
Maximale Geschwindigkeit [m/s]	2,5
Maximale Beschleunigung [m/s²]	3
Zahnstangen-Modul	m 4
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)
Gewicht des Laufwagens [kg]	76
Gewicht Hub Null [kg]	182
Gewicht je 100 mm Hub [kg]	8,3
Schienengröße [mm]	35

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart.

PAS 360 - Tragzahlen


Тур	F _x [N]	F [N	: v Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
PAS 360	10989	386400	197790	386400	65688	150310	150310

Tab. 72

PAR 170/90

25 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAR 170/90

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Abb. 22

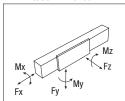
Technische Daten

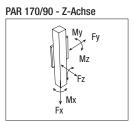
	Achse	
	Y-Achse	Z-Achse
Maximale Hublänge [mm]	11100*1	2000
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,20*2
Maximale Geschwindigkeit [m/s]	3,5	3,5
Maximale Beschleunigung [m/s²]	10	7
Zahnstangen-Modul	m 3	m 2
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)	44,56 (63,66)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)	140 (200)
Gewicht des Laufwagens [kg]	4	4
Gewicht Hub Null [kg]	8	8
Gewicht je 100 mm Hub [kg]	3,1	1,5
Schienengröße [mm]	35x16	28x11
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 76

 $^{^{\}star}$ 1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	19.734.283	9.835.781	29.570.064
Z-Achse	1.969.731	1.950.080	3.919.811


Tab. 77


Spezifikationen der Zahnstangen

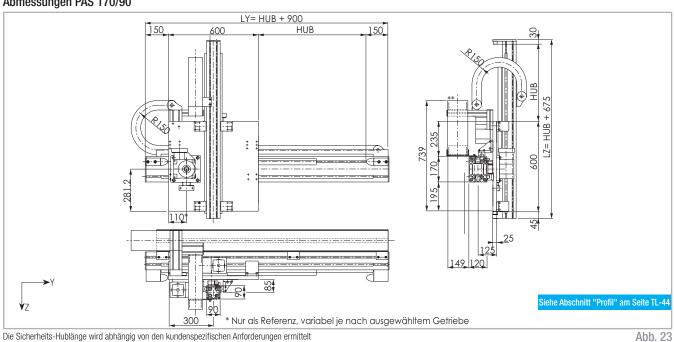
Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 3	06
Z-Achse	gehärtet, geschliffen	m 2	QO

Tab. 78

PAR 170/90 - Y-Achse

PAR 170/90 - Tragzahlen

Achse	F _x [N]	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	5714	14142	65928	14142	1202	3076	3076
Z-Achse	2902	2800	24216	2400	108	624	728


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 170/90

■ 80 Kg

Abmessungen PAS 170/90

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

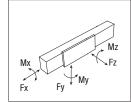
Technische Daten

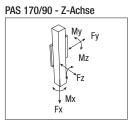
	Acl	nse
	Y-Achse	Z-Achse
Maximale Hublänge [mm]	11100*1	2000
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2
Maximale Geschwindigkeit [m/s]	3,5	3,5
Maximale Beschleunigung [m/s²]	10	7
Zahnstangen-Modul	m 3	m 2
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)	44,56 (63,66)
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)	140 (200)
Gewicht des Laufwagens [kg]	4	3
Gewicht Hub Null [kg]	8	9
Gewicht je 100 mm Hub [kg]	2,9	1,4
Schienengröße [mm]	20	15

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]
Y-Achse	19.734.283	9.835.781	29.570.064
Z-Achse	1.969.731	1.950.080	3.919.811


Tab. 81


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 3	06
Z-Achse	gehärtet, geschliffen	m 2	Ųΰ

Tab. 82

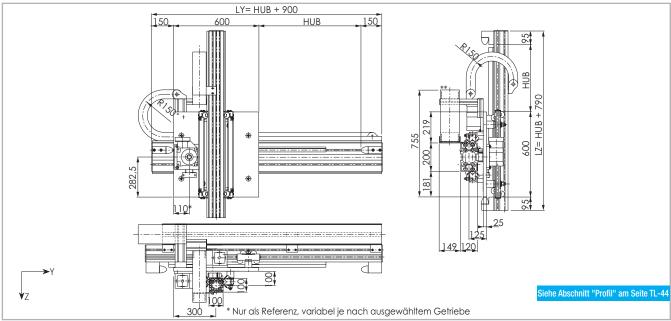
PAS 170/90 - Y-Achse

PAS 170/90 - Tragzahlen

Achse	F _x [N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	5714	153600	70798	153600	10368	39552	39552
Z-Achse	2902	96800	45082	96800	4356	25652	25652

Tab. 80

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 200/100

25 Kg PC Hohe Taktrate Niedrige Taktrate 100 Kg

Abmessungen PAR 200/100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 24

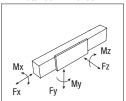
Technische Daten

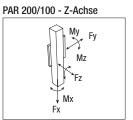
	Acl	ıse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	11100*1	2200	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,25*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	7	7	
Zahnstangen-Modul	m 3	m 3	
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)	200 (280)	
Gewicht des Laufwagens [kg]	54		
Gewicht Hub Null [kg]	11	11	
Gewicht je 100 mm Hub [kg]	3,5	2,4	
Schienengröße [mm]	35x16	35x16	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	32.697.979	12.893.004	45.860.983
Z-Achse	3.637.190	3.457.193	7.094.383


Tab. 85


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 3	06
Z-Achse	gehärtet, geschliffen	m 3	QO

Tab. 86

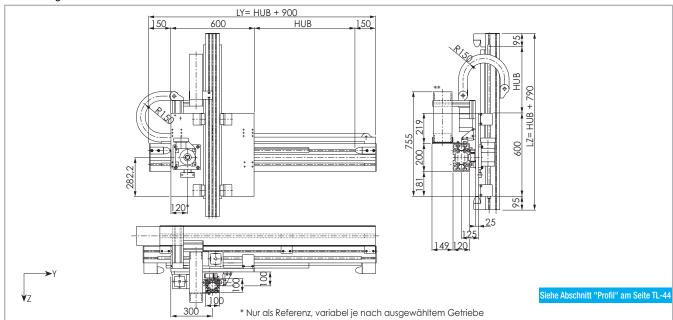
PAR 200/100 - Y-Achse

PAR 200/100 - Tragzahlen

Achse	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	5714	14142	65298	14142	1414	3536	3536
Z-Achse	5714	7071	32964	7071	354	1867	1867

Tab. 84

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 200/100

25 Kg PC 100 Kg

Abmessungen PAS 200/100

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Acl	nse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	11100*1	2200	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	7	7	
Zahnstangen-Modul	m 3	m 3	
Teilkreisdurchmesser des Ritzels [mm]	63,66 (89,13)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	200 (280)	200 (280)	
Gewicht des Laufwagens [kg]	45		
Gewicht Hub Null [kg]	10	00	
Gewicht je 100 mm Hub [kg]	3,3	2,1	
Schienengröße [mm]	20	20	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]
Y-Achse	32.697.979	12.893.004	45.860.983
Z-Achse	3.637.190	3.457.193	7.094.383

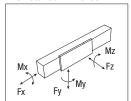

Tab. 89

Abb. 25

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 3	Q6
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ
			Tab. 90

PAS 200/100 - Y-Achse

PAS 200/100 - Z-Achse

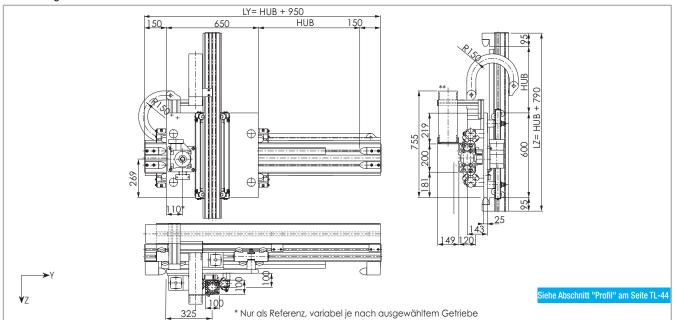
My Fy Mz Fz

PAS 200/100 - Tragzahlen

Achse	F _x [N]	F [N	, V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	5714	153600	70798	153600	11520	39552	39552
Z-Achse	5714	153600	70798	153600	7680	40704	40704

Tab. 88

Tab. 91


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 200/100P

■ 100 Kg

Abmessungen PAR 200/100 P

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 26

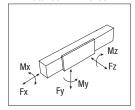
Technische Daten

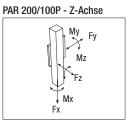
	Achse		
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	11050*1	2200	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,25*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	7	7	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	69		
Gewicht Hub Null [kg]	140		
Gewicht je 100 mm Hub [kg]	4,8	2,4	
Schienengröße [mm]	55x25	35x16	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden. *2) Vergleichswert für einen Hub von 1000mm in Z-Richtung.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	32.697.979	12.893.004	45.860.983
Z-Achse	3.637.190	3.457.193	7.094.383


Tab. 93


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul		
Y-Achse	Schrägverzahnung,	m 4	Q6	
Z-Achse	gehärtet, geschliffen	m 3		

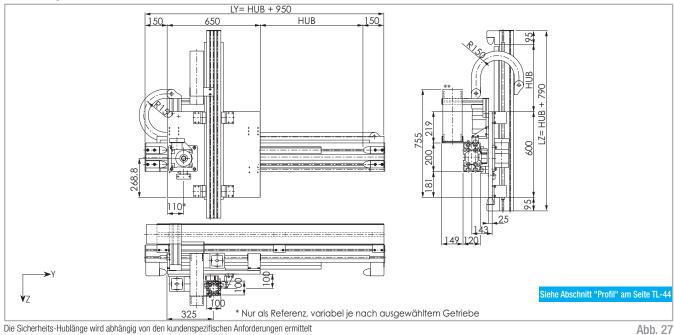
Tab. 94

PAR 200/100P - Y-Achse

PAR 200/100P - Tragzahlen

Achse	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	24042	112593	24042	2404	6611	6611
Z-Achse	5714	7071	32964	7071	354	1867	1867

Tab. 92


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{**}Energiekette als Option erhältlich

PAS 200/100P

■ 100 Kg

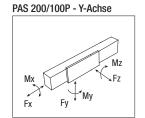
Abmessungen PAS 200/100P

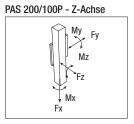
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]	
Y-Achse	32.697.979	12.893.004	45.860.983	
Z-Achse	3.637.190	3.457.193	7.094.383	

Tab. 97


Technische Daten


	Achse		
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	11050* ¹	2200	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	7	7	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	59		
Gewicht Hub Null [kg]	12	21	
Gewicht je 100 mm Hub [kg]	4,0	2,1	
Schienengröße [mm]	25	20	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 96	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

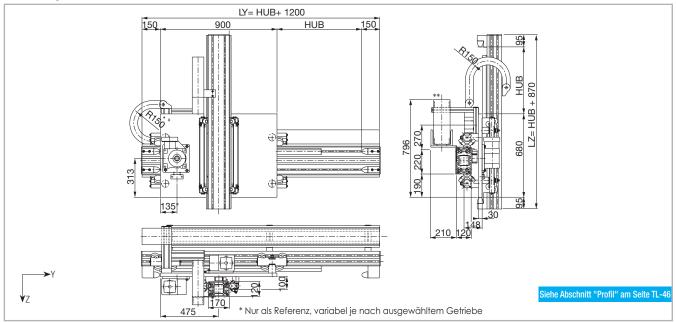
Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	Q6
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ
			Tab. 98

PAS 200/100P - Tragzahlen

Achse	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	258800	116833	258800	19410	73111	73111
Z-Achse	5714	153600	70798	153600	7680	40474	40474

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 220/170

60 Kg Hohe Taktrate Niedrige Taktrate ■ 200 Kg

Abmessungen PAR 220/170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 28

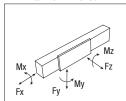
Technische Daten

	Acl	nse	
	Y-Achse	Z-Achse	
Movimalo Hublöngo [mm]	10800*1	2400	
Maximale Hublänge [mm]	10000	2400	
Max. Wiederholgenauigkeit [mm]	± 0,05	$\pm 0,25^{*2}$	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	6	4	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	98		
Gewicht Hub Null [kg]	19	95	
Gewicht je 100 mm Hub [kg]	5,2	3,1	
Schienengröße [mm]	55x25	35x16	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden. *2) Vergleichswert für einen Hub von 1000mm in Z-Richtung.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	46.248.422	15.591.381	61.839.803
Z-Achse	19.734.283	9.835.781	29.570.064


Tab. 101

Spezifikationen der Zahnstangen

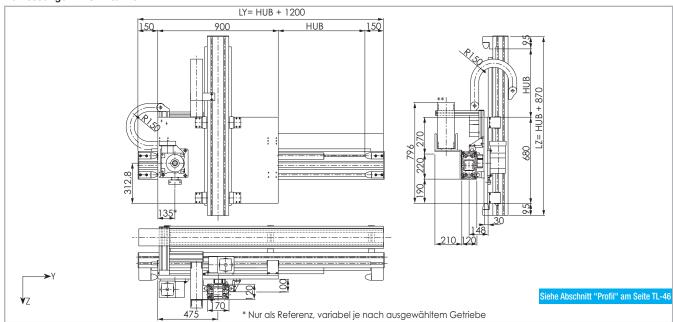
Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ

Tab. 102

PAR 220/170 - Y-Achse

PAR 220/170 - Tragzahlen

Achse	F _x [N]	F [t	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	3298	12307	12307
Z-Achse	5714	7071	32964	7071	601	1867	1867


Tab. 100

^{**}Energiekette als Option erhältlich

PAS 220/170

60 Kg Hohe Taktrate Niedrige Taktrate ■ 200 Kg

Abmessungen PAS 220/170

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Flächenträgheitsmomente der Aluminiumprofile

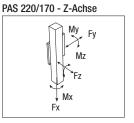
Achse	l _x [mm⁴]	l _y [mm⁴]	l _ր [mm⁴]	
Y-Achse	46.248.422	15.591.381	61.839.803	
Z-Achse	19.734.283	9.835.781	29.570.064	

Tab. 105

Abb. 29

Technische Daten

	Achse		
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2400	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	6	4	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	95		
Gewicht Hub Null [kg]	17	76	
Gewicht je 100 mm Hub [kg]	4,4	2,9	
Schienengröße [mm]	25	25	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 104	


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ

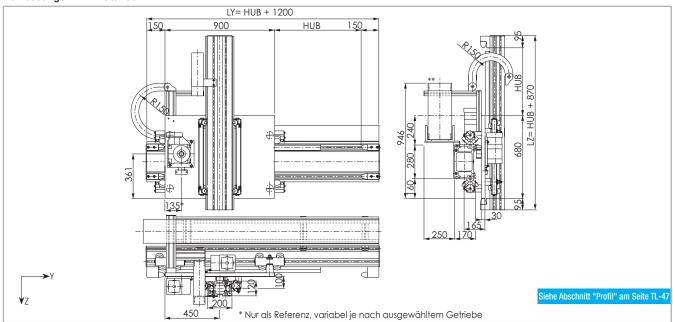
Tab. 106

PAS 220/170 - Y-Achse

PAS 220/170 - Tragzahlen

Achse	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	258800	116833	258800	23939	105461	105461
Z-Achse	5714	258800	116833	258800	21998	76993	76993

Tab. 107


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 280/200

100 Kg Hohe Taktrate Niedrige Taktrate ■ 200 Kg

Abmessungen PAR 280/200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 30

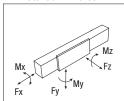
Technische Daten

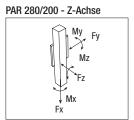
	Acl	1se	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2600	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,25*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	4	4	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	99		
Gewicht Hub Null [kg]	220		
Gewicht je 100 mm Hub [kg]	6,6	3,5	
Schienengröße [mm]	55x25	35x16	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 108	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]	
Y-Achse	126.456.800	48.292.512	174.749.312	
Z-Achse	32.697.979	12.893.004	45.860.983	


Tab. 109


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ

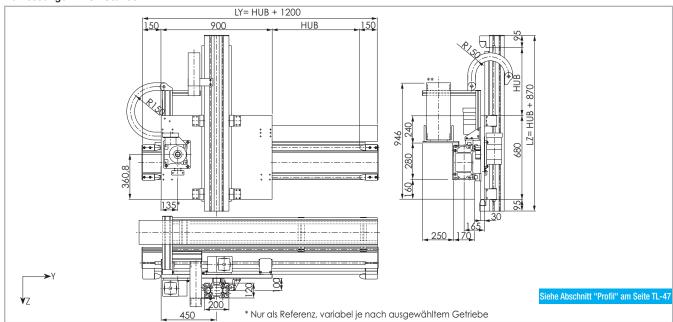
Tab. 110

PAR 280/200 - Y-Achse

PAR 280/200 - Tragzahlen

Achse	F _x [N]	F [1	: v V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	4197	12307	12307
Z-Achse	5714	7071	32964	7071	707	1867	1867

Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 280/200

100 Kg PC Hohe Taktrate Niedrige Taktrate 200 Kg

Abmessungen PAS 280/200

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

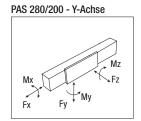
Technische Daten

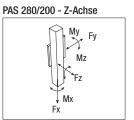
	Act	ıse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2600	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2	
Maximale Geschwindigkeit [m/s]	3	3	
Maximale Beschleunigung [m/s²]	4	4	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	86		
Gewicht Hub Null [kg]	202		
Gewicht je 100 mm Hub [kg]	6,0	3,4	
Schienengröße [mm]	30	25	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	126.456.800	48.292.512	174.749.312
Z-Achse	32.697.979	12.893.004	45.860.983


Tab. 113


Abb. 31

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 3	QU

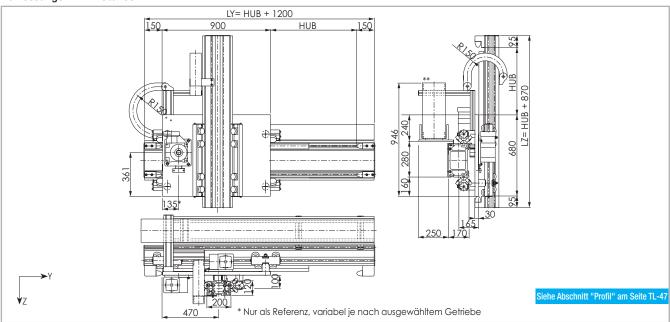
Tab. 114

PAS 280/200 - Tragzahlen

Achse	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	266400	142231	266400	34632	105228	105228
Z-Achse	5714	258800	116833	258800	25880	76993	76993

Tab. 112

Tab. 115


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 280/200P

■ 400 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAR 280/200P

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Abb. 32

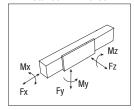
Technische Daten

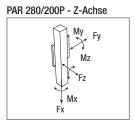
	Acl	nse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2600	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,25*2	
Maximale Geschwindigkeit [m/s]	3	2	
Maximale Beschleunigung [m/s²]	4	3	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	11	12	
Gewicht Hub Null [kg]	244		
Gewicht je 100 mm Hub [kg]	6,6	4,8	
Schienengröße [mm]	55x25	55x25	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 116	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	126.456.800	48.292.512	174.749.312
Z-Achse	32.697.979	12.893.004	45.860.983


Tab. 117


Spezifikationen der Zahnstangen

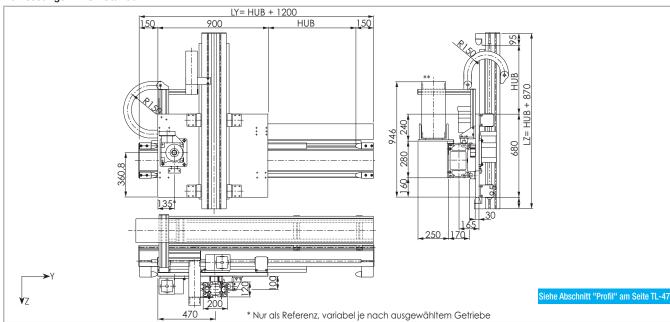
Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	QO

Tab. 118

PAR 280/200P - Y-Achse

PAR 280/200P - Tragzahlen

Achse	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	4197	12307	12307
Z-Achse	10989	24042	112593	24042	2404	4568	4568


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 280/200P

100 Kg [■ 400 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAS 280/200P

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Acl	nse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2600	
Max. Wiederholgenauigkeit [mm]	± 0,05	± 0,1*2	
Maximale Geschwindigkeit [m/s]	3	2	
Maximale Beschleunigung [m/s²]	4	3	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	1(05	
Gewicht Hub Null [kg]	217		
Gewicht je 100 mm Hub [kg]	6,0	3,9	
Schienengröße [mm]	30	25	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 120	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]	
Y-Achse	126.456.800	48.292.512	174.749.312	
Z-Achse	32.697.979	12.893.004	45.860.983	

Tab. 121

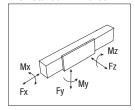

Tab. 122

Abb. 33

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	QU

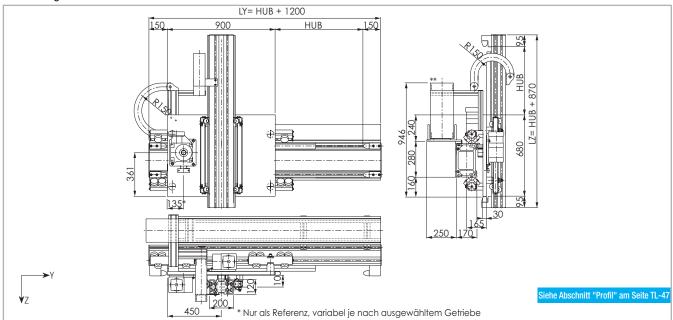
PAS 280/200P - Y-Achse

PAS 280/200P - Z-Achse

PAS 280/200P - Tragzahlen

Achse	F _x [N]	F [N	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	266400	142231	266400	34632	105228	105228
Z-Achse	10989	258800	116833	258800	25880	76993	76993

Tab. 123


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 280/200E

100 Kg Hohe Taktrate Niedrige Taktrate ■ 300 Kg

Abmessungen PAR 280/200E

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Abb. 34

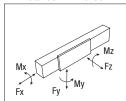
Technische Daten

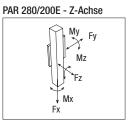
	Achse		
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2600	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,25*2	
Maximale Geschwindigkeit [m/s]	2,5	2	
Maximale Beschleunigung [m/s²]	2,5	3	
Zahnstangen-Modul	m 4	m 3	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)	
Gewicht des Laufwagens [kg]	111		
Gewicht Hub Null [kg]	232		
Gewicht je 100 mm Hub [kg]	6,6	3,5	
Schienengröße [mm] *1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe *2) Vorgleichewart für einen Hub von 1000mm in 7. Pichtung	55x25 erreicht werden.	35x16 Tab. 124	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse I _x [mm ⁴]		l _y [mm⁴]	lր [mm⁴]	
Y-Achse	126.456.800	48.292.512	174.749.312	
Z-Achse	32.697.979	12.893.004	45.860.983	


Tab. 125


Spezifikationen der Zahnstangen

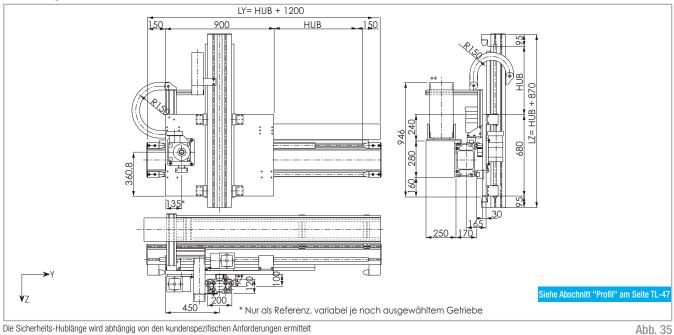
Achse	Typ des Zahnstange	Zahnstan- gen-Modul		
Y-Achse	Schrägverzahnung,	m 4	Q6	
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ	

Tab. 126

PAR 280/200E - Y-Achse

PAR 280/200E - Tragzahlen

Achse	F _x [N]	F [I	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	8395	11108	11108
Z-Achse	5714	7071	32964	7071	707	1867	1867


Siehe Prüfung unter Statische Belastung und Lebensdauer auf Seite SL-2ff

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 280/200E

100 Kg 300 Kg Hohe Taktrate

Abmessungen PAS 280/200E

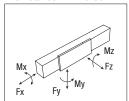
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

	Achse			
	Y-Achse	Z-Achse		
Maximale Hublänge [mm]	10800*1	2600		
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,1*2		
Maximale Geschwindigkeit [m/s]	2,5	2		
Maximale Beschleunigung [m/s²]	2,5	3		
Zahnstangen-Modul	m 4	m 3		
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	63,66 (89,13)		
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	200 (280)		
Gewicht des Laufwagens [kg]	102			
Gewicht Hub Null [kg]	220			
Gewicht je 100 mm Hub [kg]	6,4	3,4		
Schienengröße [mm]	35	25		

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile


Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]	
Y-Achse	126.456.800	48.292.512	174.749.312	
Z-Achse	32.697.979	12.893.004	45.860.983	

Tab. 129

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 3	Ųΰ
			Tab. 130

PAS 280/200E - Y-Achse

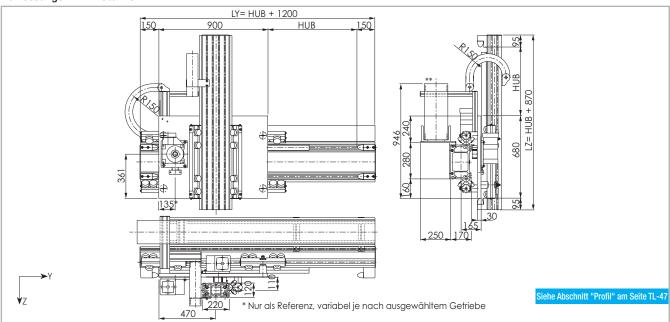
PAS 280/200E - Z-Achse

PAS 280/200E - Tragzahlen

Achse	F _x [N]	F [N	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	386400	197790	386400	50232	150310	150310
Z-Achse	5714	258800	116833	258800	25880	76993	76993

Tab. 128

Tab. 131


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 280/220

■ 600 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAR 280/220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt **Energiekette als Option erhältlich

Abb. 36

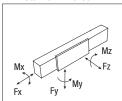
Technische Daten

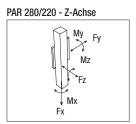
	Act	1se	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2800	
Max. Wiederholgenauigkeit [mm]*1	± 0,1	± 0,25*2	
Maximale Geschwindigkeit [m/s]	2	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	122		
Gewicht Hub Null [kg]	260		
Gewicht je 100 mm Hub [kg]	6,6	5,2	
Schienengröße [mm]	55x25	55x25	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 132	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	126.456.800	48.292.512	174.749.312
Z-Achse	46.248.422	15.591.381	61.839.803


Tab. 133

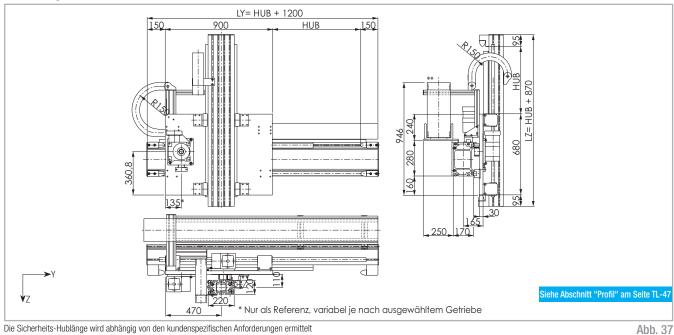

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	Ųΰ

Tab. 134

PAR 280/220 - Y-Achse

PAR 280/220 - Tragzahlen


Achse	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	8395	12307	12307
Z-Achse	10989	24042	112593	24042	3298	4568	4568

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 280/220

250 Kg Hohe Taktrate Niedrige Taktrate ■ 600 Kg

Abmessungen PAS 280/220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

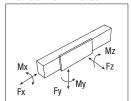
Technische Daten

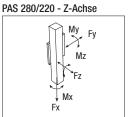
	Act	ıse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2800	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,15*2	
Maximale Geschwindigkeit [m/s]	2	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	1()2	
Gewicht Hub Null [kg]	234		
Gewicht je 100 mm Hub [kg]	6,4	4,6	
Schienengröße [mm]	35	30	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	I _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]
Y-Achse	126.456.800	48.292.512	174.749.312
Z-Achse	46.248.422	15.591.381	61.839.803


Tab. 137


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	Ųΰ

Tab. 138

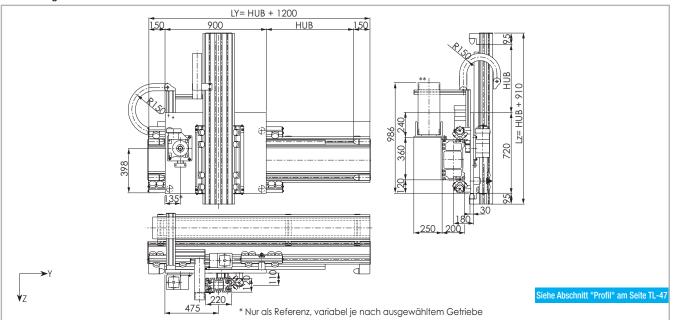
PAS 280/220 - Y-Achse

PAS 280/220 - Tragzahlen

Achse	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	386400	197790	386400	50232	150310	150310
Z-Achse	10989	266400	142231	266400	29304	77256	77256

Tab. 136

Tab. 139


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 360/220

300 Kg PC Hohe Taktrate Niedrige Taktrate 600 Kg

Abmessungen PAR 360/220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 38

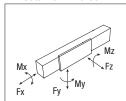
Technische Daten

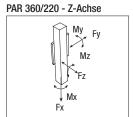
	Acl	ıse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2800	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,25*2	
Maximale Geschwindigkeit [m/s]	2,5	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	122		
Gewicht Hub Null [kg]	283		
Gewicht je 100 mm Hub [kg]	8,5	5,2	
Schienengröße [mm]	55x25	55x25	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	lր [mm⁴]	
Y-Achse	317.212.806	103.285.258	420.498.064	
Z-Achse	46.248.422	15.591.381	61.839.803	


Tab. 141


Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	QO

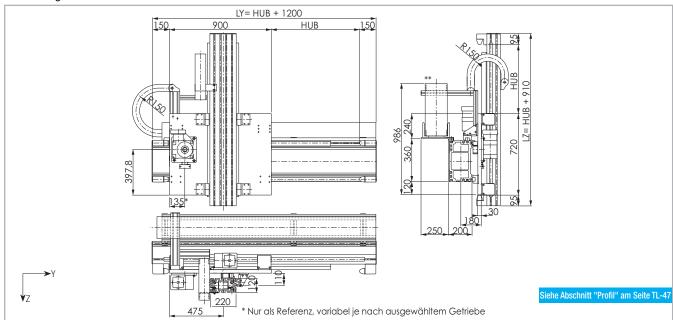
Tab. 142

PAR 360/220 - Y-Achse

PAR 360/220- Tragzahlen

Achse	F _x [N]	F [t	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	10793	11108	11108
Z-Achse	10989	24042	112593	24042	3298	4568	4568

Tab. 140


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 360/220

300 Kg ■ 600 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAS 360/220

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

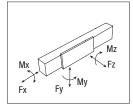
	Acl	nse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	2800	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,15*2	
Maximale Geschwindigkeit [m/s]	2,5	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	102		
Gewicht Hub Null [kg]	26	60	
Gewicht je 100 mm Hub [kg]	8,3	4,6	
Schienengröße [mm]	35	30	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 144	

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	I _p [mm⁴]
Y-Achse	317.212.806	103.285.258	420.498.064
Z-Achse	46.248.422	15.591.381	61.839.803

Tab. 145


Abb. 39

Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	Ųΰ

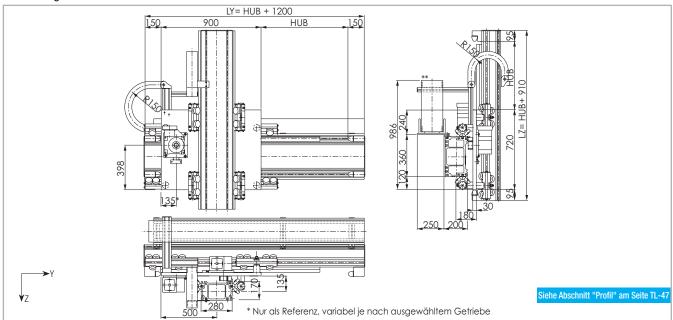
Tab. 146

PAS 360/220 - Y-Achse

PAS 360/220 - Tragzahlen

Achse	F _x [N]	F [1	: Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	386400	197790	386400	65688	150310	150310
Z-Achse	10989	266400	142231	266400	29304	82584	82584

Tab. 147


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAR 360/280

■ 800 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAR 360/280

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

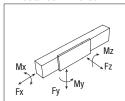
Abb. 40

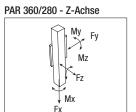
Technische Daten

	Achse		
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	3000	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,25*2	
Maximale Geschwindigkeit [m/s]	2	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	122		
Gewicht Hub Null [kg]	300		
Gewicht je 100 mm Hub [kg]	8,5	6,6	
Schienengröße [mm]	55x25	55x25	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 148	

¹⁾ Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile


Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	317.212.806	103.285.258	420.498.064
Z-Achse	126.456.800	48.292.512	174.749.312


Tab. 149

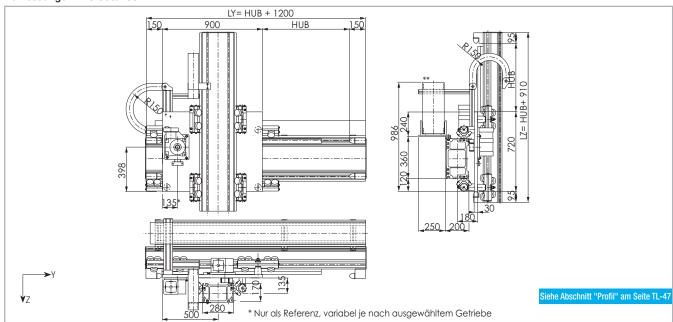
Spezifikationen der Zahnstangen

Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	Ųΰ
			Tab. 150

PAR 360/280 - Y-Achse

PAR 360/280 - Tragzahlen

Achse	F _x [N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	29981	149063	29981	10793	11108	11108
Z-Achse	10989	29981	149063	29981	4197	9189	9189


^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

PAS 360/280

400 Kg [■ 800 Kg Hohe Taktrate Niedrige Taktrate

Abmessungen PAS 360/280

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Technische Daten

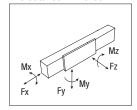
	Acl	ıse	
	Y-Achse	Z-Achse	
Maximale Hublänge [mm]	10800*1	3000	
Max. Wiederholgenauigkeit [mm]	± 0,1	± 0,15*2	
Maximale Geschwindigkeit [m/s]	2	2	
Maximale Beschleunigung [m/s²]	2	2	
Zahnstangen-Modul	m 4	m 4	
Teilkreisdurchmesser des Ritzels [mm]	76,39 (106,1)	76,39 (106,1)	
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	240 (333,33)	240 (333,33)	
Gewicht des Laufwagens [kg]	102		
Gewicht Hub Null [kg]	275		
Gewicht je 100 mm Hub [kg]	8,3	6,4	
Schienengröße [mm]	35	35	
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe	erreicht werden.	Tab. 152	

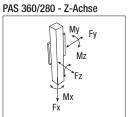
^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

Achse	l _x [mm⁴]	l _y [mm⁴]	l _p [mm⁴]
Y-Achse	317.212.806	103.285.258	420.498.064
Z-Achse	126.456.800	48.292.512	174.749.312

Tab. 153


Abb. 41


Spezifikationen der Zahnstangen

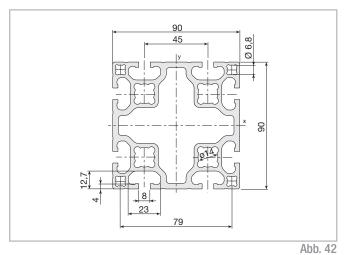
Achse	Typ des Zahnstange	Zahnstan- gen-Modul	
Y-Achse	Schrägverzahnung,	m 4	06
Z-Achse	gehärtet, geschliffen	m 4	QO

Tab. 154

PAS 360/280 - Y-Achse

PAS 360/280 - Tragzahlen

Achse	F _x [N]	F [1	: V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Stat.	Dyn.	Stat.	Stat.	Stat.	Stat.
Y-Achse	10989	386400	197790	386400	65688	150310	150310
Z-Achse	10989	386400	197790	386400	54096	115534	115534


Tab. 155

^{**}Energiekette als Option erhältlich

^{*2)} Vergleichswert für einen Hub von 1000mm in Z-Richtung.

Profil-Spezifikationen

Mittlere Profile

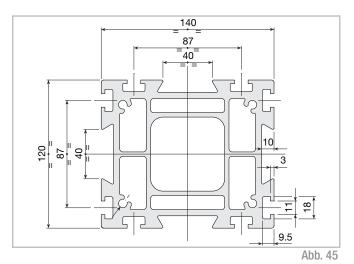
Profil 90X90		
Gewicht	6	Kg/m
Max. Länge	6	m
Trägheitsmoment lx	19.734.283	mm ⁴
Trägheitsmoment ly	9.835.781	mm ⁴
Polares Trägheitsmoment Ip	29.570.064	mm ⁴
Biege-Widerstandsmoment Wx	45.040	mm ³
Biege-Widerstandsmoment Wy	45.040	mm ³

Tab. 156

100	
← 100	
100 50 9 8 8 9 8 9 8 9 8 9 9 9	
8 22 18 4 18 4 18 4 18 18 14 18 18 14 18 18 18 18 18 18 18 18 18 18 18 18 18	

Λ	h	h	40
۲	١IJ	IJ	43

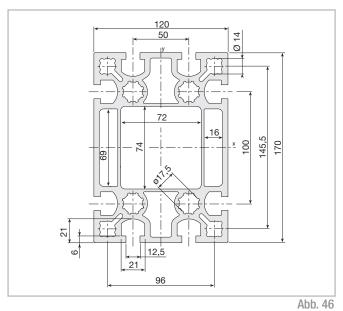
Profil 100x100		
Gewicht	9,5	Kg/m
Max. Länge	6	m
Trägheitsmoment lx	32.697.979	mm ⁴
Trägheitsmoment ly	12.893.004	mm ⁴
Polares Trägheitsmoment lp	45.860.983	mm ⁴
Biege-Widerstandsmoment Wx	76.000	mm ³
Biege-Widerstandsmoment Wy	73.000	mm³


Tab. 157

60 32.5 6.5 30 23 30 30 4 50 12 21
--

Profil 118x60		
Gewicht	7,89	Kg/m
Max. Länge	10	m
Trägheitsmoment lx	4.322.574	mm ⁴
Trägheitsmoment ly	1.011.437	mm ⁴
Polares Trägheitsmoment Ip	5.334.011	mm ⁴
Biege-Widerstandsmoment Wx	73.263	mm³
Biege-Widerstandsmoment Wy	33.714	mm³

Abb. 44

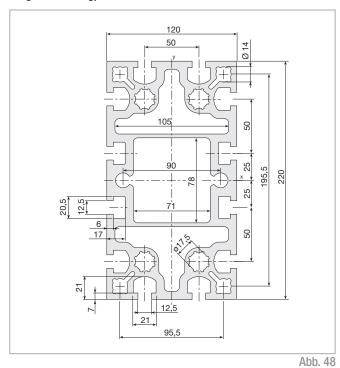

Tab. 158

Profil 140x120		
Gewicht	14,6	Kg/m
Max. Länge	10	m
Trägheitsmoment lx	11.482.355	mm ⁴
Trägheitsmoment ly	8.919.490	mm ⁴
Polares Trägheitsmoment lp	20.402.100	mm ⁴
Biege-Widerstandsmoment Wx	191.372	mm ³
Biege-Widerstandsmoment Wy	127.421	mm³

Tab. 159

Traglast der Tragprofile

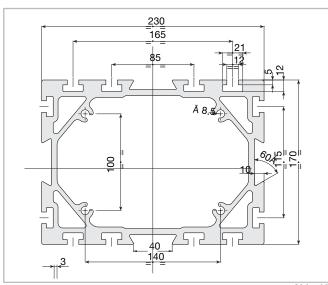
STATYCA (120x170)		
Gewicht	17	Kg/m
Max. Länge	12	m
Trägheitsmoment lx	19.734.283	mm ⁴
Trägheitsmoment ly	9.835.781	mm ⁴
Polares Trägheitsmoment Ip	8.460.000	mm ⁴
Biege-Widerstandsmoment Wx	232.168	mm³
Biege-Widerstandsmoment Wy	163.929	mm ³


Tab. 160

120 50 25 25 20,5	
	Abb. 47

Tab. 161

Traglast der Tragprofile

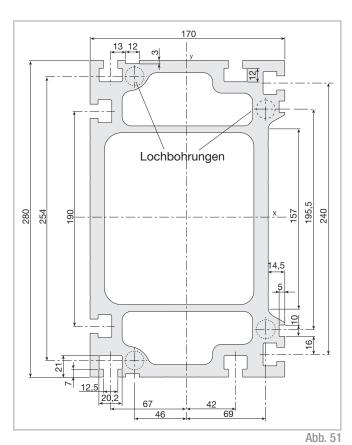


LOGYCA (120x220)		
Gewicht	25	Kg/m
Max. Länge	12	m
Trägheitsmoment lx	46.248.422	mm ⁴
Trägheitsmoment ly	15.591.381	mm ⁴
Polares Trägheitsmoment Ip	61.839.803	mm ⁴
Biege-Widerstandsmoment Wx	423.182	mm ³
Biege-Widerstandsmoment Wy	260.833	mm³

Tab. 162

Traglast der Tragprofile

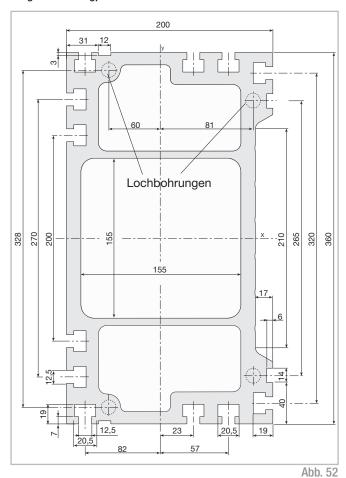
3 = 140	
	Abb. 49
51,5	


Profil 230x170 Gewicht 25,5 Kg/m 12 Max. Länge* m Trägheitsmoment lx 65.007.642 $\rm mm^4$ Trägheitsmoment ly 37.783.535 ${\rm mm^4}$ Polares Trägheitsmoment Ip 102.792.000 mm⁴ Biege-Widerstandsmoment Wx 564.284 ${\rm mm^3}$ Biege-Widerstandsmoment Wy 444.500 mm³

* Nicht eloxiert Tab. 163

7400568 Trägerprofil für Energiekette			
Gewicht	1,3	Kg/m	
Verfügbare Länge	6	m	

Tab. 164



PRATYCA (170x280)		
Gewicht	40	Kg/m
Max. Länge*	12	m
Trägheitsmoment lx	126.456.800	mm ⁴
Trägheitsmoment ly	48.292.512	mm ⁴
Polares Trägheitsmoment Ip	174.749.312	mm ⁴
Biege-Widerstandsmoment Wx	957.790	mm ³
Biege-Widerstandsmoment Wy	591.620	mm³

* Nicht eloxiert Tab. 165

Traglast der Tragprofile

SOLYDA (200X360)		
Gewicht	60	Kg/m
Max. Länge*	12	m
Trägheitsmoment lx	317.212.806	mm ⁴
Trägheitsmoment ly	103.285.258	mm ⁴
Polares Trägheitsmoment Ip	420.498.064	mm ⁴
Biege-Widerstandsmoment Wx	1.770.500	mm³
Biege-Widerstandsmoment Wy	1.035.300	mm³

* Nicht eloxiert Tab. 166

Zubehör

Automatische programmierbare Zahnstangenschmierung

Das Schmierfett wird durch eine programmierbare Patrone geliefert (durchschnittliche Lebensdauer: ca. 1 Jahr). Das Fett wird mit Hilfe eines Filzzahnrades (1) gleichmäßig auf die Zahnstangen verteilt. Sie brauchen einen Montagesatz pro Zahnstange.

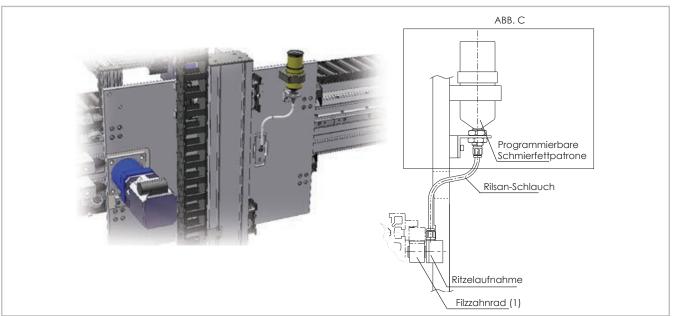


Abb. 53

1 - Ersatzteile

Spezifikation	Bestellcode
programmierbare Schmierfettpatrone (125 ml)	101.0744
m2 - PU-Ritzel mit Schrägverzahnung [1]	101.1079
m3 - PU-Ritzel mit Schrägverzahnung [1]	701.0059
m4 - PU-Ritzel mit Schrägverzahnung [1]	116.0051

Tab. 167

2 - Montagesatz zur Schmierung

Spezifikation (siehe Abb. C)	Bestell- code
Montagesatz zur Schmierung (ohne PU-Ritzel und Rilsan-Schlauch)	736.0332

Tab. 168

Tabelle zur Auswahl des maximalen Drehmoments

Ritzel / Zahnstangen - Schrägverzahnung

Modul	Z [n°]	Øp [mm]	KSD [Nm]	KRD [Nm]
0	21	44,56	150	200
2	30	63,66	205	265
2	20	63,66	400	500
3	28	89,13	500	650
4	18	76,39	880	1000
4	25	106,1	1150	1500

Tab. 169

Bei garantierter Schmierung unter idealen Lastbedingungen und bei idealer Dynamik, (1 m/s) mit starrer Ritzelhalterung [Nm].

Beispiel für eine vereinfachte Berechnung

Um den richtigen Wert für das Arbeitsdrehmoment zu erhalten, das maximale Betriebsdrehmoment (Tab. 1) durch den Sicherheitsfaktor (Tab. 2) dividieren. Die Zwischenwerte können je nach Anwendung eingestellt werden.

Bewegung (A) = Starker Stoß 1.75

Geschwindigkeit (B) = Gering 1

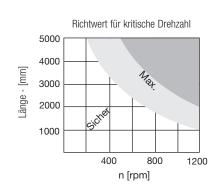
Schmierung (C) = Konstant 0.9

Zahnstange = Modul 3 KSD

Ritzel = \emptyset p 63.66 (400 Nm) Sicherheitsfaktor = A x B x C = 1.575

Maximal übertragbares Drehmoment = Max. Drehmoment 400 / Sicherheits- faktor 1,575 $_$ 254 N

Für Hochleistungsanwendungen kontaktieren Sie bitte unsere technische Abteilung, um die geeigneten Prüfungen durchzuführen.


Bewegung (A)	Geschwindigkeit (B)	Schmierung (C)	Sicherheitsfaktor (AxBxC)
Geringer Stoß 1.25	Gering 1	kontinuierlich 0.9	1.13
Mittlerer Stoß 1.5	Mittel 1.25	Täglich 1.2	2.25
Stark Stoß 1.75	Hoch 1.5	Monatlich 2.5	6.56

Tab. 170

Anschlusswellen

Die Baureihe Tecline umfasst mehrere Hohlwellen zum Anschluss der Ritzel am System. Wir liefern Standardanschlüsse je nach den Anforderungen Ihrer Anwendung. Der komplette Montagesatz enthält alle Bauteile, die für den Anschluss notwendig sind.

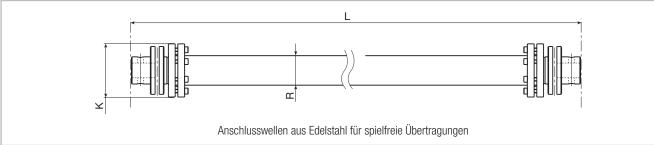


Abb. 54

R(*)	K	L _{max}	Mmax [Nm]	rot. Trägheitmoment [kgm²]	Bestellcode L
50	81	6.300	35	0,0092 + 0,66 x L. x10 ⁻⁶	436.0291
50	93	6.300	70	0,0161 + 1,34 x L. x10 ⁻⁶	436.0245
70	104	6.400	100	$0,0293 + 2,93 \text{ x L. x}10^{-6}$	436.0282
80	126	6.400	190	0,0793 + 4,5 x L. x10 ⁻⁶	436.0292
90	143	6.500	300	0,1456 + 6,53 x L. x10 ⁻⁶	436.0986

(*) Das Material für die Welle und der Durchmesser werden in Übereinstimmung mit den erforderlichen Werten für Geschwindigkeit, Mittenabstand L, Drehmoment und Genauigkeit ausgewählt...

Absturzsicherung mit pneumatischem Bremssystem

Absturzsicherungen sind in einer Vielzahl von Größen erhältlich und werden nach der Art der Anwendung geliefert. Diese Systeme können zum Beispiel dazu dienen, um eine frei fallende Last an jedem Hubpunkt zu stoppen, oder in jeder Position unter statischen Bedingungen zu sperren. Nach einem unerwarteten Druckabfall erfolgt eine Zwei-Wege-Blockierung. Ein patentiertes mechanisches Sicherheitsentriegelungssystem ist auf

Anfrage erhältlich. Der Montagesatz umfasst die Bremsvorrichtung, die Stahlwelle mit den entsprechenden Halterungen und einen Mikroschalter.

Ein Magnetventil ist auf Anfrage lieferbar.

Betriebsdruck 3-6 Bar.

Ohne Druck = gesperrt.

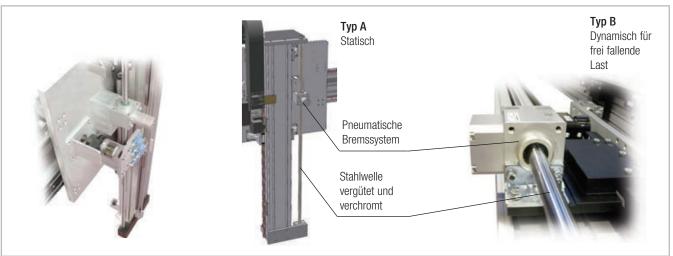


Abb. 55

1- Statische Klemmvorrichtung

Тур	Bestellcode	Haltekraft [N]	Hub [mm]
Α	236.0018	/ 1.200	/
Α	236.0018	/ 1.900	/
Α	236.0018	/ 3.000	/
Α	236.0018	/ 5.400	/
Α	236.0018	/ 7.500	/
Α	236.0018	/ 12.000	/

Tab. 172

1- Bremse

Тур	Bestellcode	Haltekraft [N]	Hub [mm]
В	236.0019	/ 3.200	/
В	236.0019	/ 5.400	/
В	236.0019	/ 7.500	/
В	236.0019	/ 12.000	/

Notbremse für frei fallende Last

Sicherungselement (Stopperzylinder)

Die Sicherungselement, die in zwei Größen erhältlich sind, dienen zur Blockierung der vertikalen Achsen in der Wartungsposition. Wählen sie die korrekte Größe je nach Last. Im Montagesatz enthalten sind: Befestigungselemente Stopperzylinder, Mikroschalter. Max. Betriebsdruck: 10 bar.

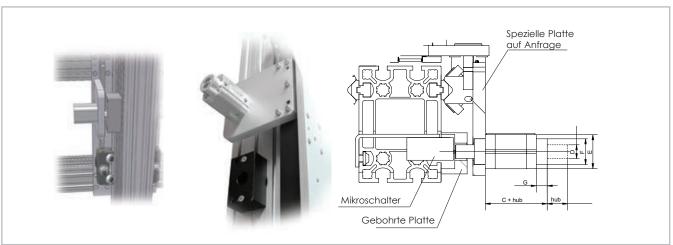


Abb. 56

1- Stopperzylinder

ØD Kolbenstange	Hub	С	Е	F	G	Kit Code
20	20	60,5	50	38	16	236.0021
32	30	-	-	-	-	236.0022

2- Zubehör: Gebohrte Platte

ØD Rod	Base	Breite	Stärke
20	60	100	39
32	60	100	39

Tab. 174 Tab. 175

Spannpratzen

Material: Aluminiumlegierung (Rs=310 N/mm²).

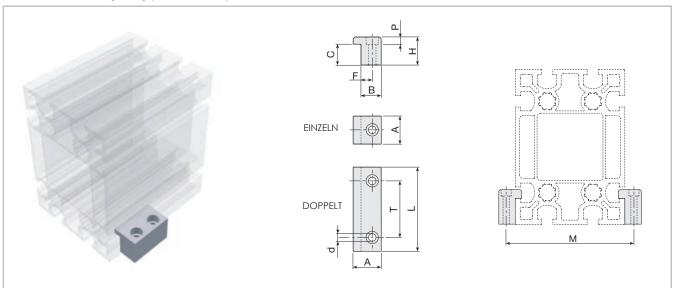


Abb. 57

Profil	Α	L	T	d	Н	Р	С	F	В	M	Einzelcode	Doppelter Code
Profil 90x90	30	50	25	9	25	9,5	18	12	22	69/114	415.0772	415.0773
Profil 100x100	25	50	25	6,7	27	6,8	20,6	10	18	120	415.0769	415.0764
STATYCA	30	90	50	11	40	11	28,3	14	25	198	415.0767	415.0762
VALYDA Horizontal	30	90	50	11	40	11	28,3	14	25	228	415.0767	415.0762
VALYDA Vertikal	30	90	50	11	50	11	43,1	14	25	148	215.0042	215.0041
LOGYCA	30	90	50	11	40	11	28,3	14	25	248	415.0767	415.0762
PRATYCA Horizontal	30	90	50	11	20	11	11,3	14	25	308	415.0768	416.0763
PRATYCA Vertikal	30	90	50	11	25	11	13,5	14	25	198	-	915.1174
SOLYDA Horizontal	30	90	50	11	20	11	11,3	14	25	308	415.0768	415.0763
SOLYDA Vertikal	30	90	50	11	25	11	13,5	14	25	198	-	915.1174

▶ L-förmige Halterung

Halterung mit Gewindebohrung

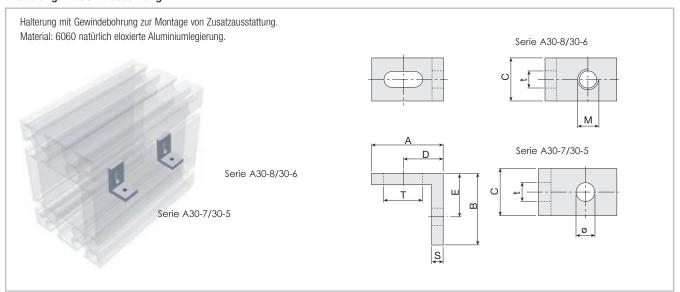


Abb. 58

Α	В	С	D	Е	S	Txt	M	Bestellcode	Ø	Bestellcode
45	45	20	25	25	5	16 x 6,5	M6	A30-86	6	A30-76
35	25	20	19	15	5	20 x 6,5	M4	A30-64	4	A30-54
35	25	20	19	15	5	20 x 6,5	M5	A30-65	5	A30-55
35	25	20	19	15	5	20 x 6,5	M6	A30-66	6	A30-56
25	25	15	14	15	4	13,5 x 5,5	МЗ	B30-63	3	B30-53
25	25	15	14	15	4	13,5 x 5,5	M4	B30-64	4	B30-54
25	25	15	14	15	4	13,5 x 5,5	M5	B30-65	5	B30-55
25	25	15	14	15	4	13,5 x 5,5	M6	B30-66	6	B30-56

Halterung zur Montage von Zusatzausstattung

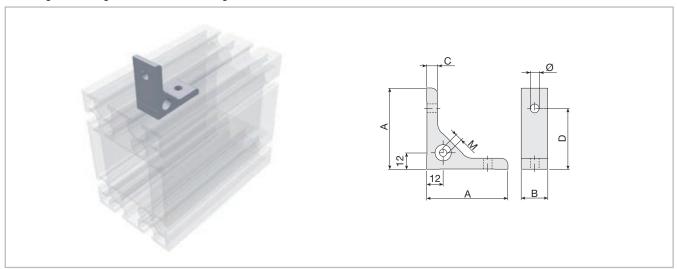


Abb. 59

L-förmige Halterung mit Gewindebohrung zur Montage von Zusatzausstattung und zur Verbesserung der Steifigkeit der aus Profilen zusammengesetzten Rahmen.

Material: 6060 natürlich eloxierte Aluminiumlegierung.

A	В	С	D	Е	Ø	M	Bestellcode
60	20	8	45	-	6,5	-	B30-10
60	20	8	45	-	6,5	M6	B30-20
60	30	8	45	-	9	-	A30-10
60	30	8	45	-	9	M6	A30-20
38	30	8	25	-	9	-	A30-00
31	20	6	20	-	6,5	-	C30-00

Halterung für zusätzliche Profile

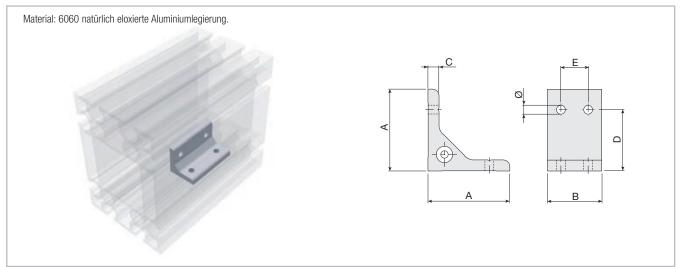


Abb. 60

A	В	С	D	E	Ø	M	Bestell- code
38	80	8	25	50	9	-	A30-02
31	60	6	20	40	6,5	-	C30-02

Tab. 179

Halterung für zusätzliche Profile

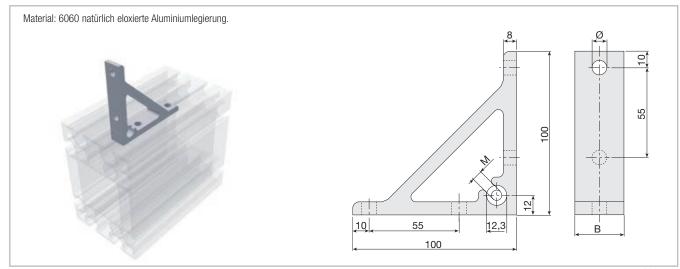


Abb. 61

	В	Ø	M	Bestellcode
Ohne Buchse	30	9	-	A30-30
Ohne Buchse	20	6,5	-	B30-30
Mit Buchse	30	9	M6	A30-40
Mit Buchse	20	6,5	M6	B30-40

Tab. 180

Abdeckungen für die Profile

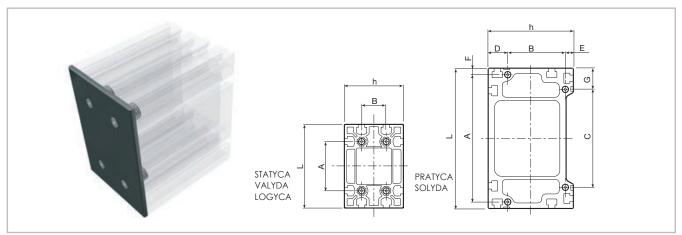


Abb. 62

Die Abdeckungen für STATYCA, VALYDA und LOGYCA (geliefert mit 4 Buchsen 207.1892 Gewinde M20/6) werden an den Profilen mit Hilfe von 4 Bohrungen in der Mitte befestigt, die über ein M20-Gewinde verfügen müssen. Die Profile PRATYCA und SOLYDA müssen hingegen in den in

der Zeichnung markierten Bereichen mit einer M6-Gewindebohrung versehen werden (in diesem Fall werden die Abdeckungen ohne Buchsen geliefert). Bitte geben Sie an, ob die Profile Abdeckungen benötigen.

Tragprofil	L	h	Α	В	C	D	Bestellcode
202.1753 -STATYCA	170	120	100	50	-	-	212.1774
202.1146 - VALYDA	200	120	100	50	-	-	212.1704
202.2184 - LOGYCA	220	120	150	50	-	-	212.2279
202.1147 - PRATYCA	280	170	254	115	195.5	39	212.1705
202.0342 - SOLYDA	360	200	328	141	265	40	212.1706

Tab. 181

Abb. 63

Die Abdeckungen für kleine und mittlere Profile haben keine Schrauben oder Buchsen. Zur Montage werden sie einfach mit moderatem Druck in die Profilenden gesteckt.

Material: Schwarzes Polyethylen, Stärke ca. 5 mm.

Profil	L	h	Bestell- code
Profil 90x90	90	90	E40-40
Profil 100x100	100	100	A40-50

Nutensteine für kleine und mittlere Profile

Einsätze für Basisprofile 30/45/50/60

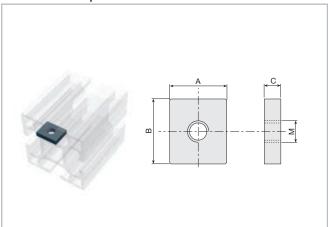


Abb. 64

Material: Verzinkter Stahl

Wichtig: Die Einsätze müssen vor der Montage in die Längsnuten eingefügt werden.

Gewinde	A-B-C Bestellcode	Gewinde	A-B-C Bestellcode
M3	B32-30	M4	A32-40
M4	B32-40	M5	A32-50
M5	B32-50	M6	A32-60
M6	B32-60	M8	A32-80
Feder	211.1077	Spring	211.1061

Tab. 183

Auch geeignet für die Profile STATYCA und VALYDA

Material: Verzinkter Stahl

Vierkantmuttern

Wichtig: Die Einsätze müssen vor der Montage in die Längsnuten eingefügt werden.

Abb. 45

18 8,5 Gewinde M4 M5 M6

Kunststoffverbundfeder für die vertikale Positionierung des Einsatzes.

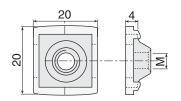


Abb. 65

Gewinde	Bestellcode 18x18	Bestellcode 20x20
M4	209.0031	209.0023
M5	209.0032	209.0019
M6	209.0033	209.1202
M8	209.0034	209.0467

Tab. 184

Feder	Bestellcode
Für alle Einsätze geeignet 18x18	101.0732

Nutensteine für Schwerlastprofile

T-Nutensteine

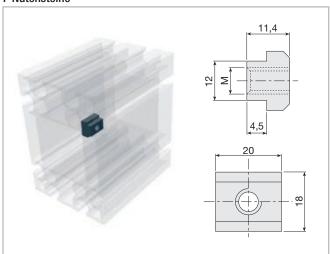


Abb. 66

Material: Verzinkter Stahl

Wichtig: Die Einsätze müssen vor der Montage in die Längsnuten eingefügt werden.

Gewinde	Bestellcode
M5	215.1768
M6	215.1769
M8	215.1770
M10	215.2124

Tab. 186

Hammermuttern

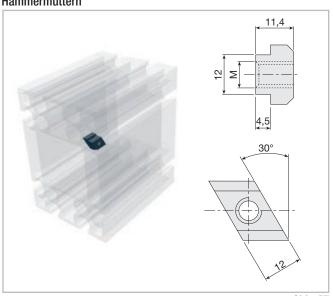
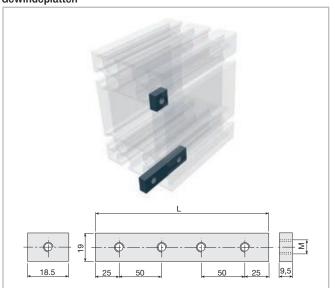


Abb. 67


Abb. 68

Material: Verzinkter Stahl

Gewinde	Bestellcode
M5	215.1771
M6	215.1772
M8	215.1773
M10	215.2125

Tab. 187

Gewindeplatten

Material: Verzinkter Stahl.

Gewinde	N. bohrungen	L	Bestellcode
M10	1	40	215.0477
M12	1	40	209.1281
M10	1	20	209.1277
M10	2	80	209.1776
M10	3	150	209.1777
M10	4	200	209.1778
M10	5	250	209.1779
M10	6	300	209.1780
M10	7	350	209.1781

Schwalbenschwanz-Einsätze für das Profil VALYDA

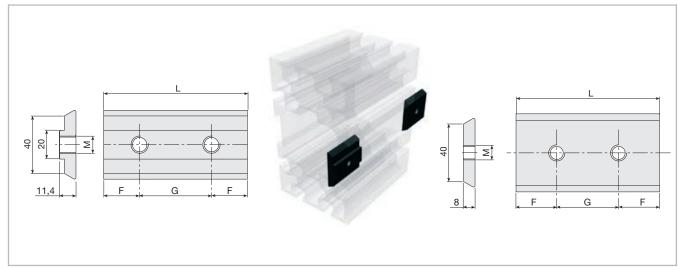


Abb. 69

Material: Brünierter Stahl C40.

Wichtig: Die Einsätze müssen vor der Montage in die Längsnuten ein-

gefügt werden.

Spezialgrößen auf Anfrage verfügbar.

F	G	L	N. bohrungen	M8	M10
25	-	50	1	214.0388	214.0394
25	50	100	2	214.0389	214.0395
25	50	200	4	214.0391	214.0398
25	50	300	6	214.0393	214.0400

	400
lah	120

F	G	L	N. bohrungen	M10
25	-	50	1	214.0430
25	50	100	2	214.0431
25	50	200	4	214.0433
25	50	300	6	214.0435

Tab. 190

Magnetisches Messsystem

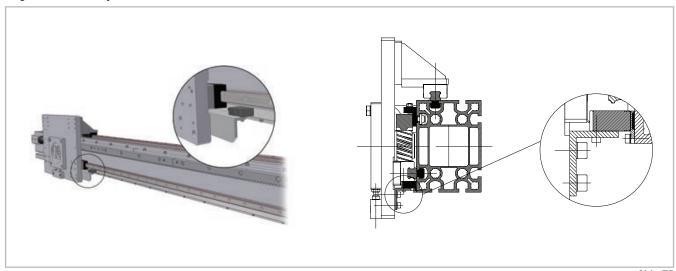


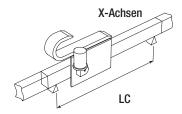
Abb. 70

Der magnetische Maßstab wird mit einem unterstützenden und schützenden Profil am Gehäuse des Moduls angebracht.

Genauigkeit von \pm 0,015 bis \pm 0,05 mm

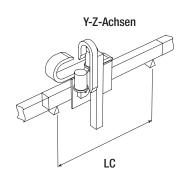
Max. Geschwindigkeit = 4 - 10 m/s (je nach Typ)

Vorauswahl-Tabelle

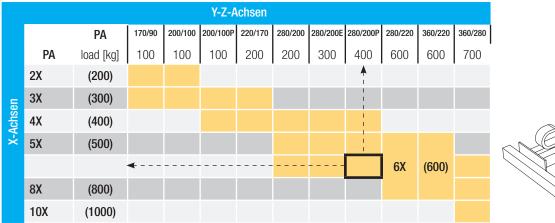

Diese Tabellen dienen dazu eine Vorauswahl zu treffen, wobei die Last mittig unter der Läuferplatte bzw. der Profilachse angreift.

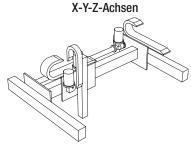
Länge der Z-Achse < 1,600 mm.

Die Durchbiegung wird unter der Annahme berechnet, dass die Träger den gleichen Abstand zueinander haben. Es wird einen punktförmige Last unter dem Laufwagen angenommen.


Wählen Sie in der folgenden Tabelle die X-Achse entsprechend der Last aus.

	PA	170	200	200P	220	280	280P	360	LC				
	Deflection												
	50	1.4				A			5000				
(g.)	100	1.8				 			5000				
Max. Tragfähigkeit [kg.]	200	2.7	1.8			 			5000				
ihigk	300		2.3	2.7		 			5000				
ragfë	400			3.3	2.8				5000				
ах. Т	500				2.8	1¦8			5000				
Ž	600					2	2		6000				
	800						2.5	1.8	6000				
	1000							2.1	7000				




Wählen Sie in der folgenden Tabelle die Y- und Z-Achse entsprechend der Last aus.

	PA	170/90	200/100	200/100P	220/170	280/200	280/200E	280/200P	280/220	360/220	360/280	LC	
	Deflection												
	50	1.9					A	A				5000	
t [kg.]	100	2.4	1.7	2	1.6		 					5000	
gkeit	200				2.2	0.8	0¦8	 				5000	
Tragfähigkeit	300	←				1 . 6	1.6	1.6				5000	
	400							1.9	2	0.9		5000	
Max.	500								2.2	1		5000	
	600								2.5	1.2	1.2	6000	
	800										2.2	6000	

Wählen Sie in der folgenden Tabelle die Y- und Z-Achse entsprechend der Last aus.

Anmerkung: Die Auswahl der X-Achse hängt von der tatsächlichen Last, der Anzahl der Stützen, der maximalen Durchbiegung und dem Gesamtgewicht der Y- und Z-Achsen ab.

Beispiel: Auswahl einer 3-Achsen-Gantry mit Rollenführungen

DATEN: Gesamt-Arbeitslast 300 kg, X-Achsen-Hub: 5.000 mm, Y-Achsen-Hub: 4.000 mm, Z-Achsen-Hub: 2.000 mm, Anzahl der Stützen: 2

Durch Analyse der Tabelle für die Y- und Z-Achsen, basierend auf Arbeitsbelastung (Pc), Profillänge (Ly) und Durchbiegung, fällt die Auswahl auf ein System PA 280/200E (Tragfähigkeit 300 kg).

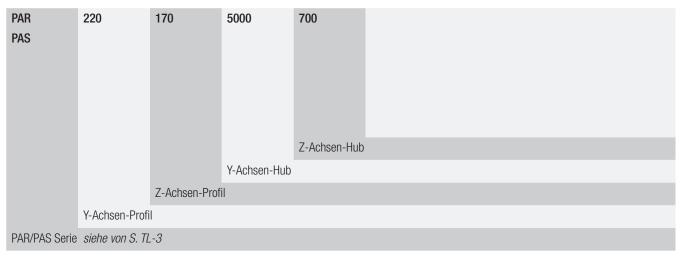
Überprüfung: Peff = Pmax- (Lz - 1600)/1000 \bullet qz = 300-(2870-1600)/1000 \bullet 35 = 255,55 kg. < di 300 kg (nicht ausreichend).

Wählen Sie daher die größere Ausführung PA 280/200P (max. Tragfähigkeit 400 kg).

$$\begin{split} \mathbf{M}_{\text{toty+z}} \ \ \mathsf{PA} \ \ & 280/200 \mathsf{P} = \mathbf{M}_{\text{base}} + (\mathbf{q}_{\text{y}} \bullet \ \mathsf{hubQ}_{\text{y}} + \mathbf{q}_{\text{z}} \bullet \ \mathsf{hubQ}_{\text{z}}) / 1000 + \mathsf{Pc} = 244 + (66 \bullet 4,000 + 48 \bullet 2,000) / \\ 1,000 + 300 = 904 \ \mathsf{kg}. \end{split}$$

 $P_{totx} = M_{tot} PA 280/200P (Y+Z) \bullet 0.66 = 596.6 kg.$

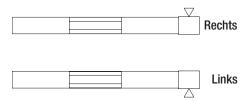
Lx = hubx + 1,200 = 5,000 + 1,200 = 6,200 mm


Durch Analyse der Tabelle für die X-Achse, basierend auf Last (Ptotx), Profillänge (Lx) und Durchbiegung, können zwei Linearachsen PA 280 ausgewählt werden.

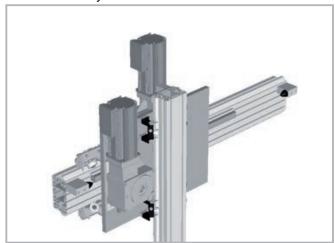
Ausgewählte Zusammensetzung: 1 x PA 280/200P + 2 x PA 280

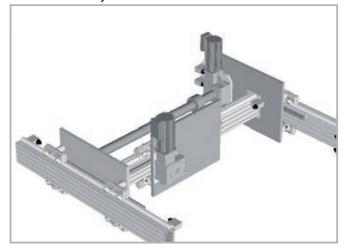
Führen Sie eine abschließende Analyse durch Berechnung der Durchbiegung anhand der tatsächlichen Spannweite aus. Unsere technische Abteilung steht Ihnen zur Verfügung, um die Anwendungen zu finden, die sich am besten für Ihre Anforderungen eignen. Wir helfen Ihnen bei der Dimensionierung von Motor und Antrieb für Ihr gesamtes Projekt.

Bestellschlüssel


Bestellbezeichnung für Lineareinheiten PAR/PAS

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com


Ausrichtung Links/Rechts


Mehrachsensysteme

1 - Zwei-Achsen-System Y-Z

2 - Zwei-Achsen-System Y-X


3 - Drei-Achsen-System X-Y-Z

4 - Drei-Achsen-System X-Y-Z

5 -Zwei-Achsen-System Y-Z

6 - Zwei-Achsen-System Y-Z

Speedy Rail A @ I 0 0 0 0 0 6 00 66 66 66 @ @ @ @

SAB Serie / ~

Beschreibung SAB



Abb. 1

Bei den Produkten der Baureihe **SAB** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe SAB durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Baureihe **SAB** umfasst Führungsschienen mit zylindrischen oder V-förmigen Rollen als Komponenten der Linearbewegung. Diese linearen Bewegungssysteme sind leicht, selbsttragend, einfach zu montieren, kostengünstig, modular, sauber und ruhig laufend. Dank dieser Lösung eignet sich diese Lösung speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung. Die Baureihe SAB umfasst Profile verschiedener Größen: 60 - 120 -180 - 250 mm.

Einige der Hauptvorteile der Baureihe SAB:

- Hohe Zuverlässigkeit
- Selbsttragend für größte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System

>

Aufbau des Systems

Aluminiumprofil

SAB ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Antriebsriemen

Das Antriebssystem der Baureihe SAB besteht aus einem Polyurethan-Zahnriemen, der mit hochfesten Stahlgurten verstärkt ist. Für einige Anwendungen ist die Lösung mit Riemenantrieb aufgrund der hohen Lastübertragungseigenschaften, der kompakten Abmessungen und der geringen Geräuschentwicklung ideal. Einige der Vorteile eines Systems mit Riemenantrieb sind: Hohe Verfahrgeschwindigkeit, hohe Beschleunigung, geringe Geräuschentwicklung und keine Notwendigkeit der Schmierung.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe SAB besteht aus eloxiertem Aluminium. Entsprechend den unterschiedlichen Größen sind Laufwagen in verschiedenen Längen erhältlich.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10-6	W	J		
					Ω . m . 10 $^{ ext{-9}}$	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 2

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

SAB mit zylindrischen oder V-förmigen Rollen:

Das Angebot von SAB umfasst eine große Auswahl an zylindrischen und V-förmigen Rollen sowie Läufer mit zwei oder mehr Rollen. Die SAB-Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die entweder nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet.

SAB Querschnitt

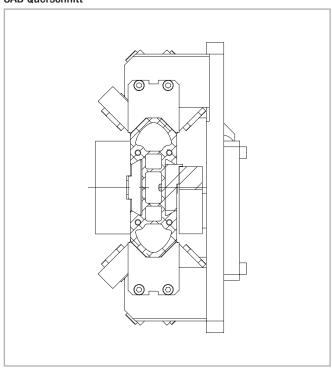
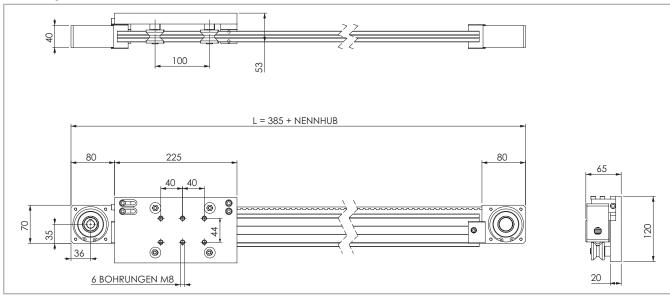



Abb. 2

SAB 60V

Abmessungen SAB 60V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

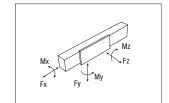
Abb. 3

Technische Daten

	Тур
	SAB 60V
Maximale Hublänge [mm]	6700
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	10 AT 10
Typ Zahnriemenscheibe	Z 19
Riemenscheibendurchmesser [mm]	60.479
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	190
Gewicht des Laufwagens [kg]	1,7
Gewicht Hub Null [kg]	3,8
Gewicht je 100 mm Hub [kg]	0,13
Schienengröße [mm]	60x20
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 4

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

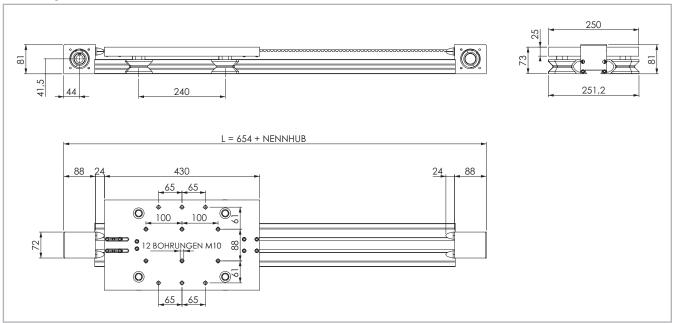

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l [10 ⁷ mm⁴]
SAB 60V	138.600	18.000	29.000
			Tab. 5

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riemen-	Riemenbreite	Gewicht
	typ	[mm]	kg/m
SAB 60V	10 AT 10	10	0,064

Tab. 6


SAB 60V - Tragzahlen

Тур	F _.	F _,	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 60V	706	540	400	9	20	27

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120VX

Abmessungen SAB 120VX

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

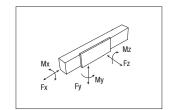
Abb. 4

Technische Daten

	Тур
	SAB 120VX
Maximale Hublänge [mm]	7020
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Gewicht des Laufwagens [kg]	7,6
Gewicht Hub Null [kg]	16,4
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40

 $^{^{\}star}$ 1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	_x [10 ⁷ mm ⁴]	_y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 120VX	2.138.988	259.785	430.000
			Tab. 9

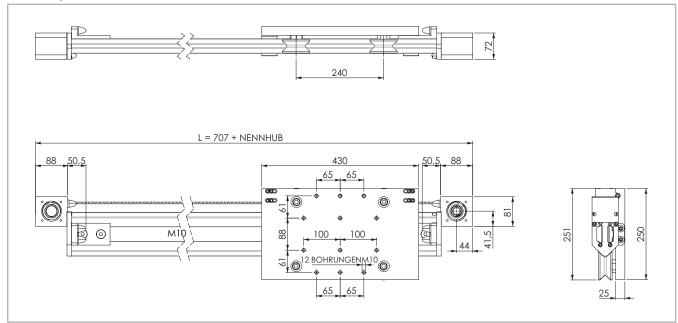
Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120VX	25 AT 10HPF	25	0,16

Tab. 10

SAB 120VX - Tragzahlen


Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VX	1349	1400	800	39.32	96	168

Tab. 8

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120VZ

Abmessungen SAB 120VZ

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

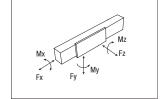
Abb. 5

Technische Daten

	Тур
	SAB 120VZ
Maximale Hublänge [mm]*1	6990
Max. Wiederholgenauigkeit [mm]*2	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	7,8
Gewicht Hub Null [kg]	16,60
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.	Tab. 12

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	I _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120VZ	2.138.988	259.785	430.000
			Tab. 13

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120VZ	25 AT 10HPF	25	0,16

Tab. 14

SAB 120VZ - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120VZ	1349	1400	800	39.32	96	168

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120CX

Abmessungen SAB 120CX

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 6

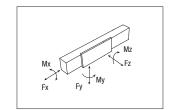
Technische Daten

	Тур
	SAB 120CX
Maximale Hublänge [mm]	7022
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	8,5
Gewicht Hub Null [kg]	17,3
Gewicht je 100 mm Hub [kg]	0,472
Schienengröße [mm]	120x40
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 16

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x	l _y	l _p
	[10 ⁷ mm ⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
SAB 120CX	2.138.988	259.785	430.000

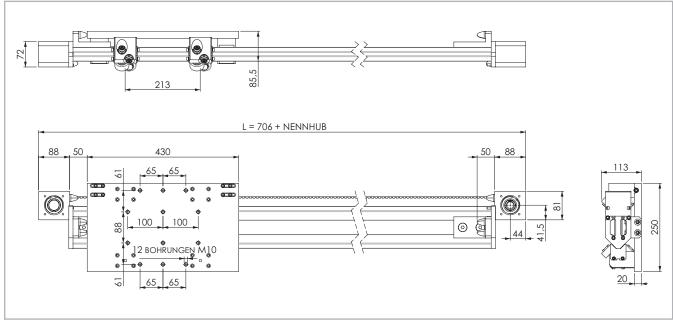

Tab. 17

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120CX	25 AT 10HPF	25	0,16

Tab. 18


SAB 120CX - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CX	1349	2489	2489	98	432	432

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 120CZ

Abmessungen SAB 120CZ

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 7

Technische Daten

	Тур
	SAB 120CZ
Maximale Hublänge [mm]*1	7020
Max. Wiederholgenauigkeit [mm]*2	± 0.2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	25 AT 10HPF
Typ Zahnriemenscheibe	Z 15
Riemenscheibendurchmesser [mm]	47.746
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	150
Gewicht des Laufwagens [kg]	8.7
Gewicht Hub Null [kg]	17.5
Gewicht je 100 mm Hub [kg]	0.472
Schienengröße [mm]	120x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.	Tab. 20

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

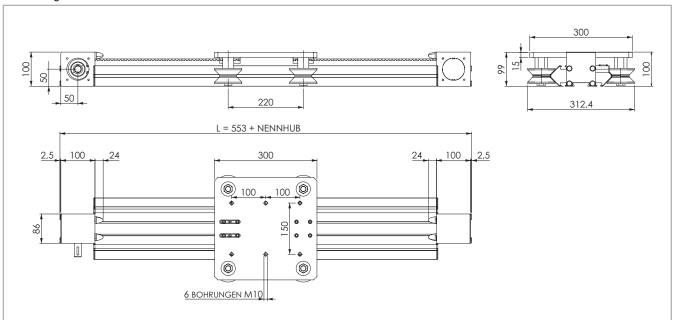

Тур	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 120CZ	2.138.988	259.785	430.000
			Tab. 21

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 120CZ	25 AT 10HPF	25	0,16

Tab. 22


SAB 120CZ - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 120CZ	1349	2489	2489	98	265	265

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 180V

Abmessungen SAB 180V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

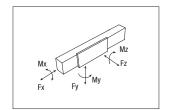
Abb. 8

Technische Daten

	Тур
	SAB 180V
Maximale Hublänge [mm]	7150
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	32 AT 10HPF
Typ Zahnriemenscheibe	Z 18
Riemenscheibendurchmesser [mm]	57,3
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	180
Gewicht des Laufwagens [kg]	7
Gewicht Hub Null [kg]	26,3
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 24

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

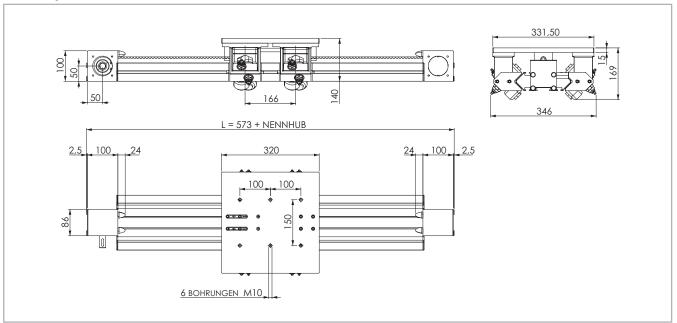

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
SAB 180V	10.291.100	1.278.700	2.600.000
			Tab. 25

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 180V	32 AT 10HPF	32	0,205

Tab. 26


SAB 180V - Tragzahlen

Тур	F	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 180V	2125	1400	800	58	88	154

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 180C

Abmessungen SAB 180C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

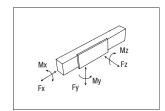
Abb. 9

Technische Daten

	Тур
	SAB 180C
Maximale Hublänge [mm]	7130
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	32 AT 10HPF
Typ Zahnriemenscheibe	Z 18
Riemenscheibendurchmesser [mm]	57,3
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	180
Gewicht des Laufwagens [kg]	11,46
Gewicht Hub Null [kg]	26,3
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 28

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

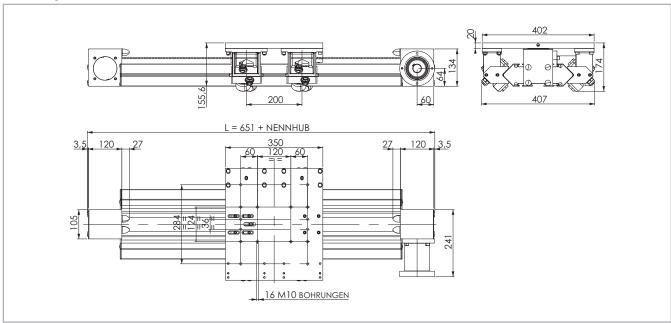

Тур	l _x [10 ⁷ mm⁴]	_y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 180C	10.291.100	1.278.700	2.600.000
			Tab. 29

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 180C	32 AT 10HPF	32	0,205

Tab. 30


SAB 180C - Tragzahlen

Тур	F	F _y	F _z	M _×	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAB 180C	2125	3620	3620	246	300	300

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAB 250C

Abmessungen SAB 250C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

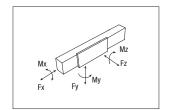
Abb. 10

Technische Daten

	Тур
	SAB 250C
Maximale Hublänge [mm]	7090
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	15
Maximale Beschleunigung [m/s²]	10
Zahnriemen-Typ	50 AT 10HP
Typ Zahnriemenscheibe	Z 24
Riemenscheibendurchmesser [mm]	76,39
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	240
Gewicht des Laufwagens [kg]	15
Gewicht Hub Null [kg]	30,4
Gewicht je 100 mm Hub [kg]	1,55
Schienengröße [mm]	250x180
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 32

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

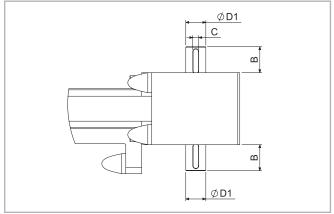

Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
SAB 250C	27.345.460	4.120.150	8.400.000
			Tab. 33

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
SAB 250C	50 AT 10HP	50	0,34

Tab. 34


SAB 250C - Tragzahlen

Тур	F	F	F _z	M _×	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAB 250C	4565	3620	3620	372	362	362

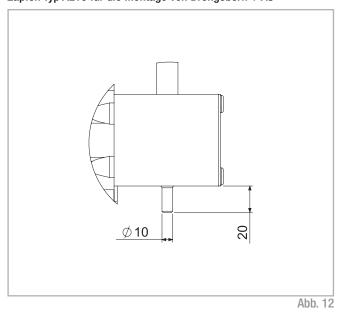
Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

Zapfen

Zapfen Typ AS

Тур	Zapfentyp	В	D1
SAB 60	AS 14	32	14h7
SAB 120	AS 20	26	20h7
SAB 180	AS 20	39.65	20h7
SAB 250	AS 30	61.5	30h7

Tab. 36


Abb. 11

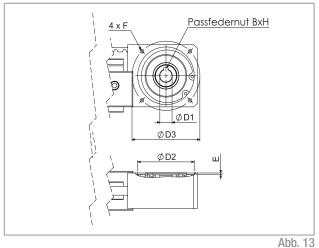
Der Zapfen kann auf beiden Seiten des Antriebkopfes vorgesehen werden.

Тур	Zapfentyp	Antriebskopf AS links	Antriebskopf AS rechts	Antriebskopf AS beidseitig
SAB 60	AS 14	1E	1C	1A
SAB 120	AS 20	1E	1C	1A
SAB 180	AS 20	1E	1C	1A
SAB 250	AS 30	1E	1C	1A

Tab. 37

Zapfen Typ AE10 für die Montage von Drehgebern + AS

Тур	Antriebskopf AS rechts + AE	Antriebskopf AS links + AE	ØD
SAB 60	1G	11	49
SAB 120	1G	11	49
SAB 180	1G	11	49
SAB 250	1G	11	76


Tab. 38

Der Zapfen kann auf beiden Seiten des Antriebkopfes vorgesehen werden

Hohlwellen

Einheit mm

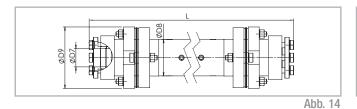
Hohlwelle Typ AC

Тур	Zapfentyp	Antriebskopf
SAB 60	AC 14	2A
SAB 120	AC 20	2A

Tab. 39

Für die Montage von angebotenen Standard-Getrieben über Hohlwelle ist ein Adapterflansch erforderlich, der bei Rollon erhältlich ist.

Тур	Zapfentyp	D1	D2	D3	E	F	Passfeder B x H
SAB 60	AC 14	14H7	65	78	3,5	M5	5 x 5
SAB 120	AC 20	20H7	55	72	3,5	M6	6 x 6


Tab. 40

Lineareinheiten im Paralleleinsatz

Verbindungswelle für den Einsatz in paralleler Anordnung

Für den Einsatz von zwei Lineareinheiten in paralleler Anordnung ist eine Synchronisations-Antriebswelle, die die Antriebe der beiden Linearein-

heiten miteinander verbindet, notwendig. Rollon kann in diesem Fall ein komplettes Kit bestehend aus Aluminium-Welle, Lamellenkupplungen und Spannelementen liefern.

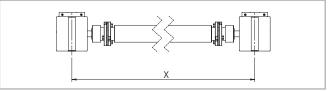
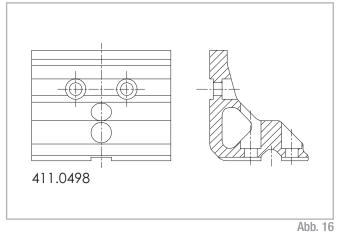
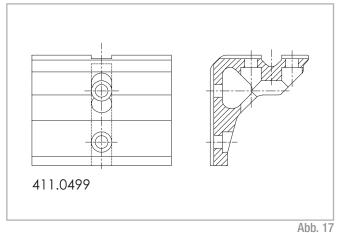


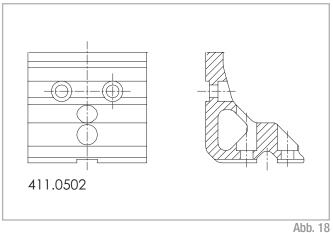
Abb. 15

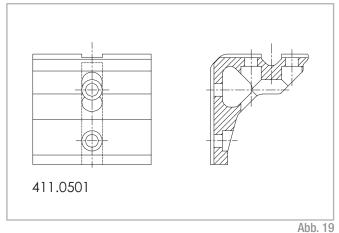

Einheit mm

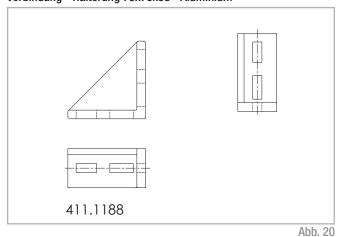
Тур	Zapfentyp	D7	D8	D9	Bestellcode
SAB 60	AP 12	12	25	45	GK12P1A
SAB 120	AP 15	15	40	69,5	GK15P1A
SAB 180	AP 20	20	40	69,5	GK20P1A
SAB 250	AP 25	25	70	99	GK25P1A


Tab. 41

Zubehör


Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium


Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium


Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

Abb. 21

Einsatz für: SAB 180V - SAB 180C - SAB250C

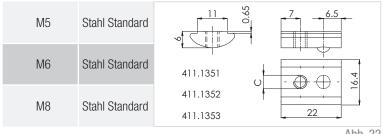


Abb. 22

Schnelleinsatz für: SAB 180V - SAB 180C - SAB 250C

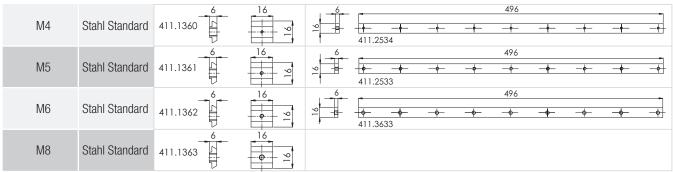


Abb. 23

Schwalbenschwanz-Einsätze für: SAB 120C - SAB 120V - SAB 180V - SAB 180C - SAB 250C

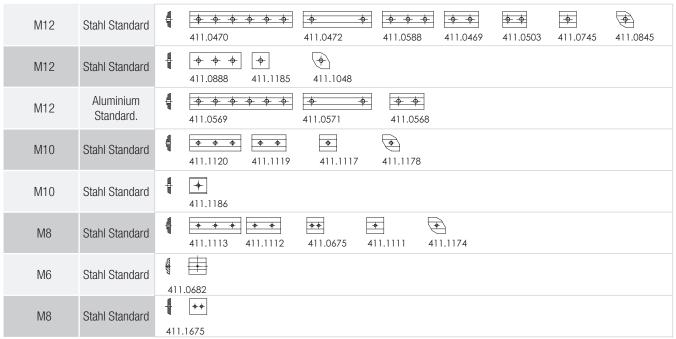
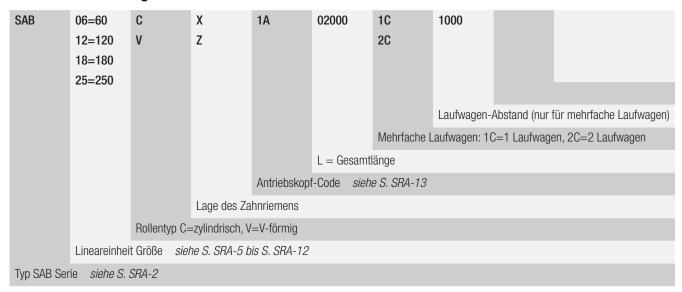


Abb. 24


Schwalbenschwanz-Einsätze für: SAB 60V

M8	Stahl Standard	4 ■ 411.3532					
M6	Stahl Standard	411.0769	411.0771	411.0754	411.0768	1 411.0732	
M5	Aluminium Standard.	♦ ⊞ 411.2732	411.2733	+ +			
M4	Stahl Standard	♦ ⊞ 411.1732					Al-la

Abb. 25

Bestellschlüssel / ~

Bestellbezeichnung für Lineareinheiten SAB Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

		Rechts
		Links

ZSY Serie / ~

Beschreibung ZSY

Bei den Produkten der Baureihe **ZSY** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe ZSY durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Lineareinheiten der Baureihe ZSY wurden entwickelt, um vertikale Bewegungen bei Gantry-Bauweise zu ermöglichen oder für Anwendungen, bei denen das Aluminiumprofil beweglich ist und der Läufer fest steht. Sie eignen sich ideal als Z-Achse in einem 3-Achsen-System. Erhältlich in der Größe 180 mm.

Einige der Hauptvorteile der Baureihe SAB:

- Hohe Zuverlässigkeit
- Selbsttragend für größte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System

Abb. 26

Aufbau des Systems

Aluminiumprofil

ZSY ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Antriebsriemen

Das Antriebssystem der Baureihe SAB besteht aus einem Polyurethan-Zahnriemen, der mit hochfesten Stahlgurten verstärkt ist. Für einige Anwendungen ist die Lösung mit Riemenantrieb aufgrund der hohen Last-übertragungseigenschaften, der kompakten Abmessungen und der geringen Geräuschentwicklung ideal. Einige der Vorteile eines Systems mit Riemenantrieb sind: Hohe Verfahrgeschwindigkeit, hohe Beschleunigung, geringe Geräuschentwicklung und keine Notwendigkeit der Schmierung.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe ZSY besteht aus eloxiertem Aluminium.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 42

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz- temperatur
kg	kN	10-6	W	J	0 400	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2,7	69	23	200	880-900	33	600-655

Tab. 43

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
$\frac{N}{mm^2}$	N —— mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

ZSY mit V-förmigen Rollen:

Diese Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die Silbentrennung nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet. Die Halterungen werden am Rahmen montiert, wenn die Schiene beweglich ist, und an den Laufwagen, wenn sie fest montiert wird.

ZSY 180 Querschnitt

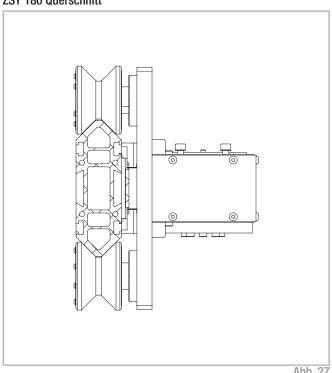
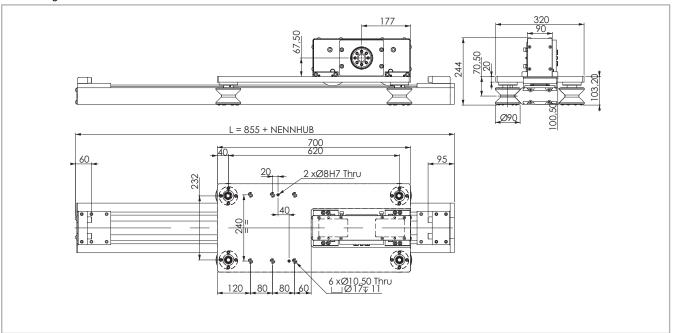



Abb. 27

ZSY 180V

Abmessungen ZSY 180V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

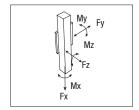
Abb. 28

Technische Daten

	Тур
	ZSY 180V
Maximale Hublänge [mm]	2500
Max. Wiederholgenauigkeit [mm]*1	± 0,2
Maximale Geschwindigkeit [m/s]	8
Maximale Beschleunigung [m/s²]	8
Zahnriemen-Typ	50 AT 10HP
Typ Zahnriemenscheibe	Z 30
Riemenscheibendurchmesser [mm]	95,49
Laufwagenhub je Umdrehung Zahnriemenscheibe [mm]	300
Gewicht des Laufwagens [kg]	25,7
Gewicht Hub Null [kg]	36
Gewicht je 100 mm Hub [kg]	1,06
Schienengröße [mm]	180x60
*1) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart	Tab. 45

^{*1)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile


Тур	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ZSY 180V	10.291.100	1.278.700	2.600.000
			Tab. 46

Antriebsriemen

Der Antriebsriemen besteht aus abriebfestem stahlverstärktem Polyurethan für hohe Zugkräfte.

Тур	Riementyp	Riemenbreite [mm]	Gewicht kg/m
ZSY 180V	50 AT 10HP	50	0,34

Tab. 47

ZSY 180V - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
ZSY 180V	4980	2300	2600	188	806	713

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

Antriebskopf

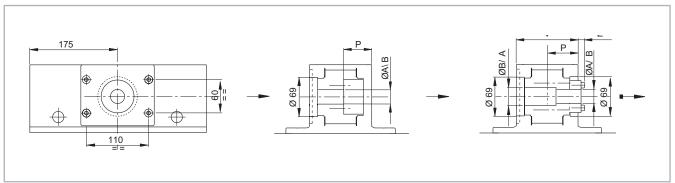
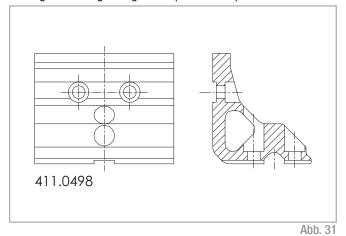


Abb. 29

Тур	A Ø [mm]	B Ø [mm]	V [mm]	P [mm]	Z [mm]	Antriebs-kopf
7CV 100V	25H7		108	48,5	11,5	1CA
ZSY 180V		32H7	108	52,5	6	1CB

Tab. 49

Adapterflansche



Тур	Getriebe-Code		Größe	
	MP105/TR105	70	25	85
ZSY 180V	LP090/PE4/LC090	68	22	80
	EP90 TT	50	19	65
				Tab. 50

Abb. 30

Zubehör

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

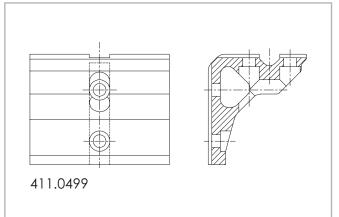
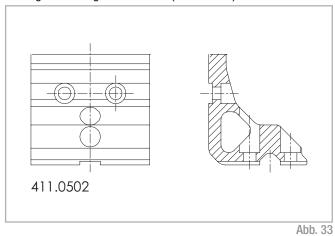



Abb. 32

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

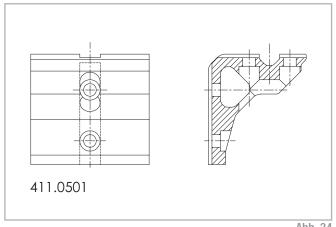
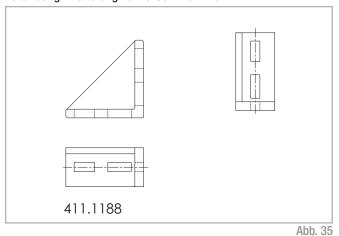



Abb. 34

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium

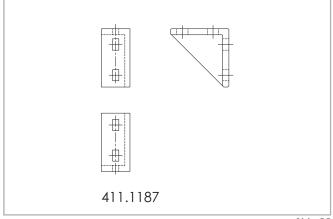


Abb. 36

Einsatz für: ZSY 180V

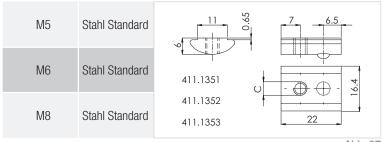


Abb. 37

Schnelleinsatz für: ZSY 180V

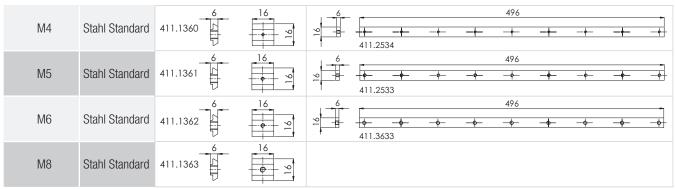


Abb. 38

Schwalbenschwanz-Einsätze für: ZSY 180V

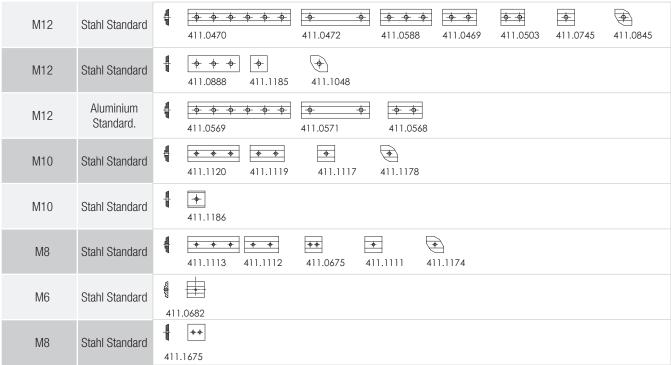
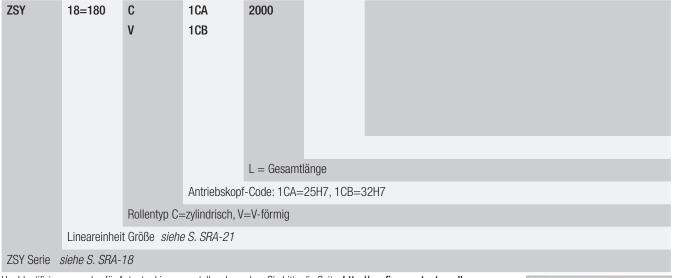
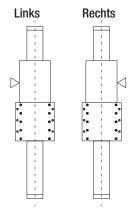



Abb. 39

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten ZSY

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Ausrichtung Links/Rechts

SAR Serie V

Beschreibung SAR

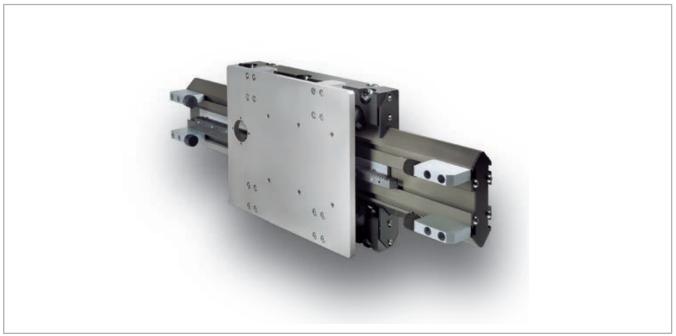


Abb. 40

Bei den Produkten der Baureihe **SAR** handelt es sich um selbsttragende Linearführungen aus stranggepresstem Aluminium, die durch ein System aus Polyurethanriemen angetrieben werden. Dank der harteloxierten Oberflächen und der mit einem Kunststoff-Verbundmaterial beschichteten Rollen zeichnet sich die Baureihe SAR durch außergewöhnliche Leistungen und hohe Tragkräfte aus. Das System ist wartungsfrei und verlangt keine Schmierung. Die Linearführungen sind auch in schmutzigen Arbeitsumgebungen seht zuverlässig und bieten einen einzigartig leisen Betrieb.

Die Baureihe **SAR** umfasst Führungsschienen mit zylindrischen oder V-förmigen Rollen als Komponenten der Linearbewegung. Diese linearen Bewegungssysteme sind leicht, selbsttragend, einfach zu montieren, kostengünstig, modular, sauber und ruhig laufend. Dank dieser Lösung eignet sich diese Lösung speziell für schmutzige Umgebungen und hohe Dynamiken bei der Automatisierung. Die Baureihe SAR umfasst Profile verschiedener Größen: 120 -180 - 250 mm.

Einige der Hauptvorteile der Baureihe SAR:

- Hohe Zuverlässigkeit
- Selbsttragend für größte Freiheit beim Design
- Hohe technische Leistung
- Hohe Tragzahlen
- Hohe Zuverlässigkeit in schmutzigen Umgebungen
- Keine Schmierung erforderlich
- Einzigartig ruhiger Lauf
- Selbstausrichtendes System
- Beliebig langer Hub

Aufbau des Systems

Aluminiumprofil

SAR ist ein Linearführungssystem mit Schienenprofilen mit hohlen Querschnitten aus einer wärmebehandelten Aluminiumlegierung. Dies macht die Schienen hoch belastbar gegen Biege- und Torsionskräfte. Die Schienen werden einer patentierten Behandlung unterzogen, die ihnen eine glatte und gehärtetem Stahl gleichenden Oberfläche und eine optimale Verschleißfestigkeit verleiht, auch in schmutzigen Umgebungen.

Laufwagen

Der Laufwagen der Lineareinheiten der Baureihe SAR besteht aus eloxiertem Aluminium. Entsprechend den unterschiedlichen Größen sind Laufwagen in verschiedenen Längen erhältlich.

Antrieb mit Zahnstange und Ritzel

Die Baureihe SAR wird durch ein System aus Zahnstange und Ritzel angetrieben. Diese Option eignet sich zum Erzielen langer Hübe und ermöglicht die Montage und den Betrieb doppelter Laufwagen. Durch die gehärteten Zahnstangen und Ritzel kann das System in verschmutzten Arbeitsumgebungen besser betrieben werden, während die gerade Verzahnung hohe Lastzahlen, geringe Geräuschentwicklung und eine sanfte Linearbewegung gestattet. Die SAR-Produkte können mit einem Schmierungs-Kit geliefert werden, um eine periodische Schmierung zu vermeiden.

Allgemeine Daten des verwendeten Aluminiums: AL 6060

Chemische Zusammensetzung [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Verunreinigungen
Rest	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15
							Tab. 51

Physikalische Eigenschaften

Dichte	Elastizitäts- modul	Wärmeausdehnungs- koeffizient (20°-100°C)	Wärmeleitfähigkeit (20°C)	Spezifische Wärme (0°- 100°C)	Spez. Wider- stand	Schmelz temperatur
kg	kN	10 ⁻⁶	W	J		
	2				Ω . m . 10 ⁻⁹	°C
dm ³	mm ²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 52

Mechanische Eigenschaften

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Führungssystem

Das Führungssystem ist ausschlaggebend für die maximal zulässigen Tragzahlen, Geschwindigkeiten und Beschleunigung.

SAB mit zylindrischen oder V-förmigen Rollen:

Das Angebot von SAR umfasst eine große Auswahl an zylindrischen und V-förmigen Rollen sowie Läufer mit zwei oder mehr Rollen. Die SAR-Rollen sind mit einem gesinterten Kunststoff-Verbundmaterial beschichtet, das resistent gegen Schadstoffe und nahezu wartungsfrei ist. In den Rollen sind leistungsfähige Kugel- oder Nadellager installiert, die entweder nach einem Standardverfahren geschmiert werden oder eine Lebensdauerschmierung verfügen. Alle Rollenträger sind mit konzentrischen und exzentrischen Stiften für eine schnelle Einstellung des Kontakts zwischen Rollen und Schiene ausgestattet.

Die Halterungen werden am Rahmen montiert, wenn die Schiene beweglich ist, und an den Laufwagen, wenn sie fest montiert wird.

SAR Querschnitt

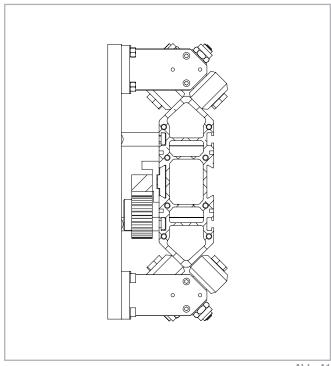
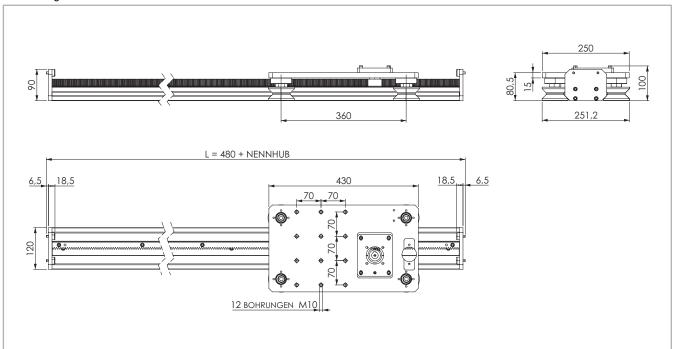



Abb. 41

SAR 120V

Abmessungen SAR 120V

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

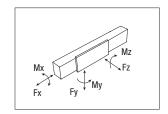
Abb. 42

Technische Daten

	Тур
	SAR 120V
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	8
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	7,5
Gewicht Hub Null [kg]	12
Gewicht je 100 mm Hub [kg]	0,85
Schienengröße [mm]	120x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werde	n. Tab. 54

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.
*2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

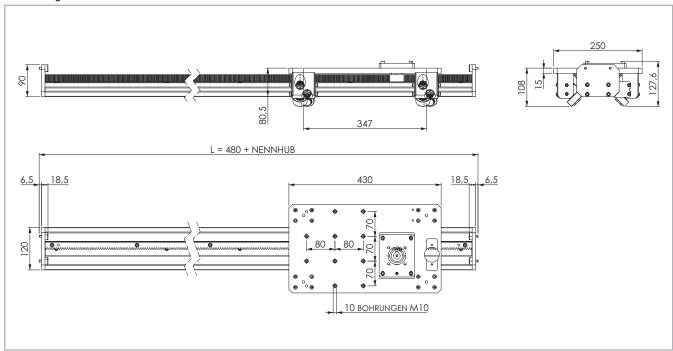

Тур	l _x	l _y	I _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
SAR 120V	2.138.988	259.785	430.000

Tab. 55

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 120V	geradverzahnt und gehärtet	m 2	Q10

Tab. 56


SAR 120V - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120V	1633	1400	800	39.32	144	252

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAR 120C

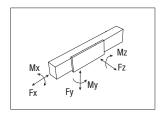
Abmessungen SAR 120C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 43

Technische Daten

	Тур
	SAR 120C
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,5
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	8,4
Gewicht Hub Null [kg]	13
Gewicht je 100 mm Hub [kg]	0,85
Schienengröße [mm]	120x40
1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 58


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

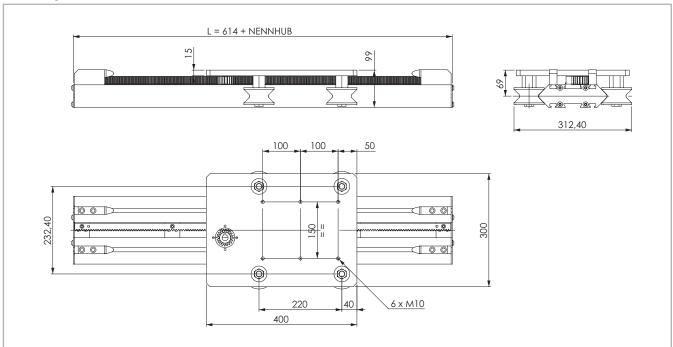
Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 120C	2.138.988	259.785	430.000
			Tab. 59

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 120C	geradverzahnt und gehärtet	m 2	Q10
			Tab. 60

SAR 120C - Tragzahlen


Тур	F _x	F,	F _z	M _x	M _y	M _z
	[N]	[Ň]	[N]	[Nm]	[Nm]	[Nm]
SAR 120C	1633	1400	800	98	432	432

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

SAR 180V

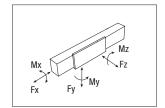
Abmessungen SAR 180V ì

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 44

Technische Daten

	Тур
	SAR 180V
Maximale Hublänge [mm]*1	NO LIMITS
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	8
Zahnstangen-Modul	m 2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	7
Gewicht Hub Null [kg]	16,5
Gewicht je 100 mm Hub [kg]	1,3
Schienengröße [mm]	180x40


^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.

Flächenträgheitsmomente der Aluminiumprofile

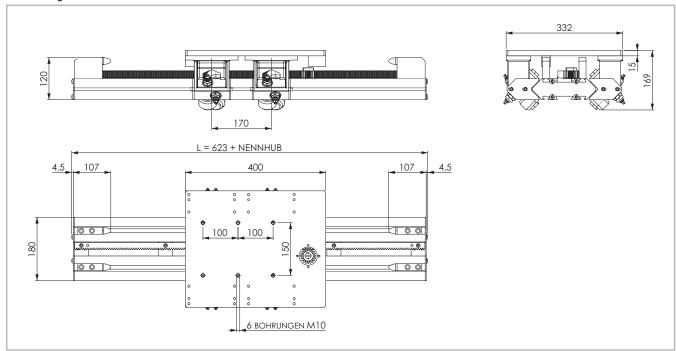
Тур	l _× [mm⁴]	l _y [mm⁴]	 [10 ⁷ mm ⁴]
SAR 180V	10.291.100	1.278.700	2.600.000
			Tab. 63

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 180V	geradverzahnt und gehärtet	m2	Q10

Tab. 64

SAR 180V - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180V	1633	1400	800	58	88	154


Tab. 62

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

SAR 180C

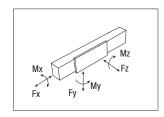
Abmessungen SAR 180C

Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 45

Technische Daten

	Тур
	SAR 180C
Maximale Hublänge [mm]*1	6900
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m2
Teilkreisdurchmesser des Ritzels [mm]	40
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	125,66
Gewicht des Laufwagens [kg]	11,46
Gewicht Hub Null [kg]	16
Gewicht je 100 mm Hub [kg]	1,3
Schienengröße [mm]	180x40
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 66

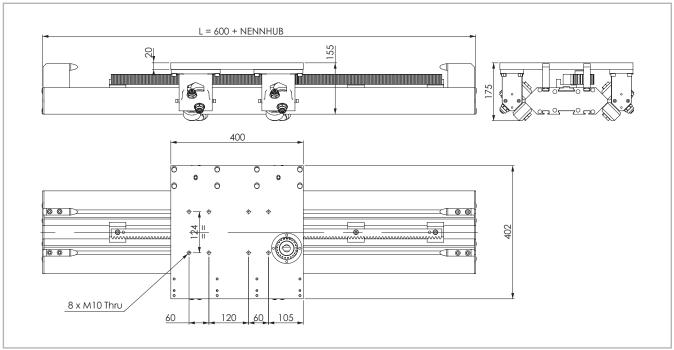

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden. *2) Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	լ _ր [10 ⁷ mm⁴]
SAR 180C	10.291.100	1.278.700	2.600.000
			Tab. 67

Spezifikationen der Zahnstangen

Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität
SAR 180C	geradverzahnt und gehärtet	m2	Q10
			Tab. 68


SAR 180C - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180C	1633	3620	3620	246	308	308

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

SAR 250C

Abmessungen SAR 250C

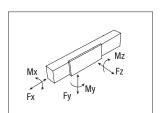
Die Sicherheits-Hublänge wird abhängig von den kundenspezifischen Anforderungen ermittelt

Abb. 46

Technische Daten

	Тур
	SAR 250C
Maximale Hublänge [mm]*1	6900
Max. Wiederholgenauigkeit [mm]*2	± 0,15
Maximale Geschwindigkeit [m/s]	3
Maximale Beschleunigung [m/s²]	10
Zahnstangen-Modul	m3
Teilkreisdurchmesser des Ritzels [mm]	63
Vorschub des Laufwagens pro Ritzelumdrehung [mm]	197,92
Gewicht des Laufwagens [kg]	15
Gewicht Hub Null [kg]	29
Gewicht je 100 mm Hub [kg]	2,17
Schienengröße [mm]	250x80
*1) Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden	Tab. 70

^{*1)} Durch Verwendung spezieller Rollon-Verbindungen können längere Hübe erreicht werden.


Flächenträgheitsmomente der Aluminiumprofile

Тур	l _x [mm⁴]	l _y [mm⁴]	lր [10 ⁷ mm⁴]
SAR 250C	27.345.460	4.120.150	8.400.000
			Tab. 71

Spezifikationen der Zahnstangen

•	<u> </u>				
Тур	Typ der Zahnstange	Zahn- stangen- Modul	Qualität		
SAR 250C	geradverzahnt und gehärtet	m3	Q10		

Tab. 72

SAR 250C - Tragzahlen

Тур	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 250C	3598	3620	3620	372	453	453

Nicht-kumulative Trägheitsmomente bezüglich der Laufwagen-Mittelachse und der theoretischen Lebensdauer der Führungsschiene "Speedy Rail" und der Rollen bis zu 80.000 km.

^{*2)} Die Wiederholgenauigkeit ist abhängig von der verwendeten Antriebsart

Zapfen

Automatische programmierbare Zahnstangenschmierung

Das Schmierfett wird durch eine programmierbare Patrone geliefert (durchschnittliche Lebensdauer: ca. 1 Jahr) (a). Das Fett wird mit Hilfe eines Filzzahnrades (1) gleichmäßig auf die Zahnstangen verteilt. Sie brauchen einen Montagesatz pro Zahnstange.

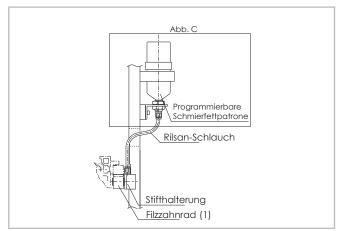
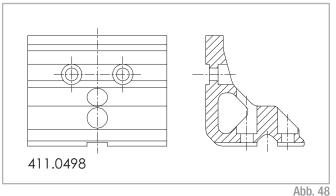



Abb. 47

Zubehör

Montage-Halterung - Lange Seite (Ø12.5 - Ø20) Aluminium

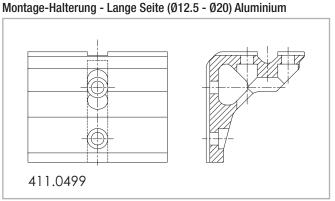
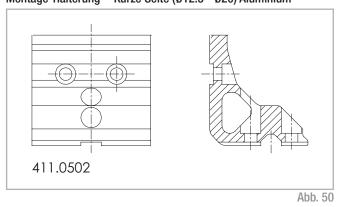



Abb. 49

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

Montage-Halterung - Kurze Seite (Ø12.5 - Ø20) Aluminium

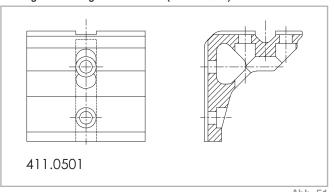
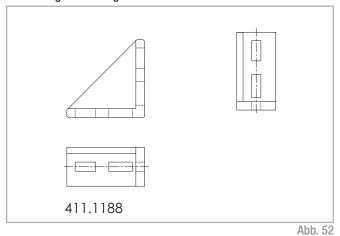



Abb. 51

Verbindung - Halterung 75x75x38 - Aluminium

Verbindung - Halterung 75x75x38 - Aluminium



Abb. 53

SRA-35

Einsatz für: SAR 180C - SAR 180V - SAR 250C

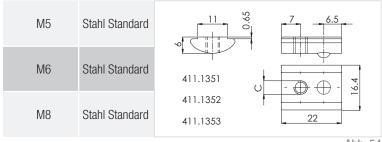


Abb. 54

Schnelleinsatz für: SAR 180C - SAR 180V - SAR 250C

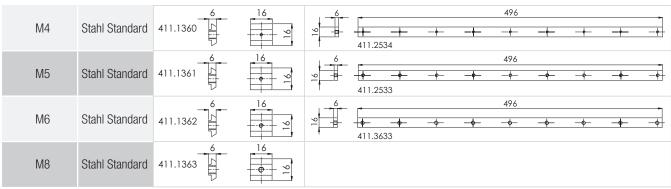


Abb. 55

Schwalbenschwanz-Einsätze für: SAR 120C - SAR 120V - SAR 180C - SAR 180V - SAR 250C

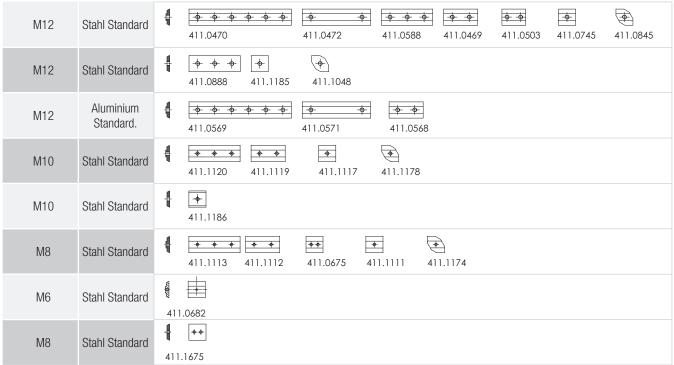
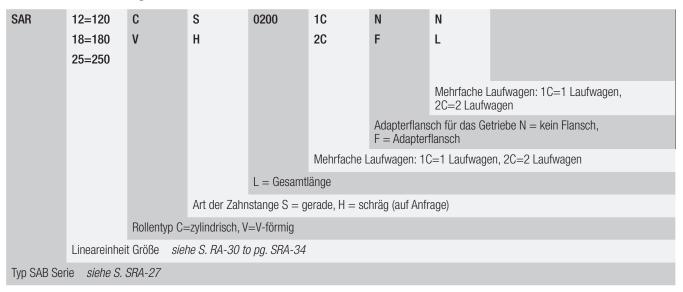
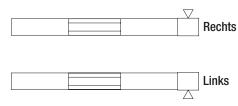



Abb. 56

Bestellschlüssel / ~


Bestellbezeichnung für Lineareinheiten SAR Serie

Um Identifizierungscodes für Actuator Line zu erstellen, besuchen Sie bitte die Seite: http://configureactuator.rollon.com

Statische Belastung und Lebensdauer

Statische Belastung

Bei der statischen Überprüfung geben die radiale Tragzahl $F_{_{v}}$, die axiale Tragzahl $F_{_{_{\! T}}}$ und die Momente $M_{_{_{\! X}}}$, $M_{_{_{\! V}}}$ und $M_{_{\! T}}$ die maximal zulässigen Werte der Belastung an. Höhere Belastungen beeinträchtigen die Laufeigenschaften. Zur Überprüfung der statischen Belastung wird ein Sicherheitsfaktor S_0 verwendet, der die Rahmenparameter der Anwendung berücksichtigt und in der folgenden Tabelle näher definiert ist:

Alle Werte für die Traglast beziehen sich auf eine Linearführung, die gut an einer starren Struktur befestigt ist. Bei freitragenden Systemen muss die Durchbiegung des Linearachsenprofils berücksichtigt werden.

Sicherheitsfaktor S

Weder Stöße noch Vibrationen, weicher und niederfrequenter Richtungswechsel, hohe Montagegenauigkeit, keine elastischen Verformungen	2 - 3
Normale Einbaubedingungen	3 - 5
Stöße und Vibrationen, hochfrequente Richtungswechsel, deutliche elastische Verformungen	5 - 7

Abb. 1

Das Verhältnis der tatsächlichen zur maximal zulässigen Belastung darf höchstens so groß sein wie der Kehrwert des angenommenen Sicherheitsfaktors S_o.

$$\frac{P_{fy}}{F_v} \le \frac{1}{S_0} \qquad \frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{P_{fz}}{F_z} \leq \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \ \le \ \frac{1}{S_0}$$

Abb. 2

Die oben stehenden Formeln gelten für einen einzelnen Belastungsfall. Wirken zwei oder mehr der beschriebenen Kräfte gleichzeitig, ist folgende Überprüfung vorzunehmen:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= wirkende Belastung (y Richtung) [N]

= theoretisch zulässige Belastung (y Richtung) [N]

= wirkende Belastung (z Richtung) [N]

= theoretisch zulässige Belastung (z Richtung) [N]

 $M_{_{1}}, M_{_{2}}, M_{_{3}} = externe Momente (Nm)$

 M_{y} , M_{y} , M_{z} = maximal zulässige Momente in den verschiedenen Belastungsrichtungen (Nm)

Der Sicherheitsfaktor S₀ kann an der unteren angegebenen Grenze liegen, wenn die auftretenden Kräfte hinreichend genau bestimmt werden können. Wirken Stöße und Vibrationen auf das System ein, sollte der höhere Wert gewählt werden. Bei dynamischen Anwendungen sind höhere Sicherheiten erforderlich. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Empfohlene Zahnriemensicherheiten

Abb. 3

Stöße und Vibrationen	Geschwindig- keit/Beschle- unigung	Einbaulage	Sicher- heitsfaktor
Weder Stöße noch	Gering	horizontal	1.4
Vibrationen	defing	vertikal	1.8
Leichte Stöße und	Mittel	horizontal	1.7
Vibrationen	MILLEI	vertikal	2.2
Stöße und Vibra-	Hoch	horizontal	2.2
tionen	ПОСП	vertikal	3
			T-1-4

Lebensdauer

Berechnung der Lebensdauer

Die dynamische Tragzahl C ist eine zur Berechnung der Lebensdauer verwendete, konventionelle Größe. Diese Belastung entspricht einer Nominal-Lebensdauer von 100 km. Die Verknüpfung von berechneter Leb-

ensdauer, dynamischer Tragzahl und äquivalenter Belastung ist durch die folgende Formel gegeben:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fy-dyn}}{P_{en}} \cdot \frac{1}{f_{i}})^{3}$$

 L_{km} = theoretische Lebensdauer (km) Fy-dyn = dynamische Tragzahl (N) P_{eq} = einwirkende äquivalente Belastung (N) f_i = Verwendungsbeiwert (s. Tab. 2)

Abb. 4

Die äquivalente Belastung P_{eq} entspricht in ihren Auswirkungen der Summe der gleichzeitig auf einen Läufer einwirkenden Kräfte und Momente. Sind diese verschiedenen Lastkomponenten bekannt, ergibt sich P aus der folgenden Gleichung:

Für SP Versionen

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Abb. 5

Für CI und CE Versionen

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Abb. 6

Hierbei sind die externen Lasten als zeitlich konstant angenommen. Kurzzeitige Belastungen, die die maximalen Tragzahlen nicht überschreiten, haben keine relevanten Auswirkungen auf die Lebensdauer und können daher bei der Berechnung vernachlässigt werden.

Verwendungsbeiwert f

f _i	
weder Stöße noch Vibrationen, weiche, niederfrequente Richtungswechsel; saubere Betriebsbedingungen; ($\alpha < 5 \text{m/s}^2$) geringe Geshwindigkeiten (<1 m/s)	1.5 - 2
leichte Vibrationen; mittlere Geschwindigkeiten; (1-2 m/s) und mittelhohe Frequenz der Richtungswechsel (5m/s² < α < 10 m/s²)	2 - 3
Stöße und Vibrationen; hohe Geschwindigkeiten (>2 m/s) und hochfrequente Richtungswechsel; (α > 10m/s²) hohe Schmutzbelastung	> 3

Tab. 2

Speedy Rail A - Lebensdauer

Die Lebensdauer der SRA-Linearführungen entspricht ca. 80.000 km.

Statische Belastung Uniline System

Statische Belastung

Bei der statischen Überprüfung geben die radiale Tragzahl $F_{_{\!\!\!\!V^{\prime}}}$ die axiale Tragzahl F_z und die Momente M_x , M_v und M_z die maximal zulässigen Werte der Belastung an. Höhere Belastungen beeinträchtigen die Laufeigenschaften. Zur Überprüfung der statischen Belastung wird ein Sicherheitsfaktor S_0 verwendet, der die Rahmenparameter der Anwendung berücksichtigt und in der folgenden Tabelle näher definiert ist:

Sicherheitsfaktor S₀

Weder Stöße noch Vibrationen, weicher und niederfrequenter Richtungswechsel, hohe Montagegenauigkeit, keine elastischen Verformungen	1 - 1.5
Normale Einbaubedingungen	1.5 - 2
Stöße und Vibrationen, hochfrequente Richtungswechsel, deutliche elastische Verformungen	2 - 3.5

Abb. 7

Das Verhältnis der tatsächlichen zur maximal zulässigen Belastung darf höchstens so groß sein wie der Kehrwert des angenommenen Sicherheitsfaktors S₀.

$$\frac{P_{fy}}{F_{v}} \le \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \le \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_z} \leq \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \leq \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Abb. 8

Die oben stehenden Formeln gelten für einen einzelnen Belastungsfall. Wirken zwei oder mehr der beschriebenen Kräfte gleichzeitig, ist folgende Überprüfung vorzunehmen:

$$\frac{P_{fy}}{F_{v}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{v}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

= wirkende radiale Belastung (N) = zulässige radiale Belastung (N) = wirkende axiale Belastung (N) = zulässige axiale Belastung (N) M_1 , M_2 , M_3 = externe Momente (Nm)

 M_x , M_y , M_z = maximal zulässige Momente

in den verschiedenen Belastungsrichtungen (Nm)

Abb. 9

Der Sicherheitsfaktor S_0 kann an der unteren angegebenen Grenze liegen, wenn die auftretenden Kräfte hinreichend genau bestimmt werden können. Wirken Stöße und Vibrationen auf das System ein, sollte der höhere Wert gewählt werden. Bei dynamischen Anwendungen sind höhere Sicherheiten erforderlich. Für weitere Informationen wenden Sie sich bitte an unsere Anwendungstechnik.

Berechnungsformeln

Momente M_v und M_z für Lineareinheiten mit langer Läuferplatte

Die zulässigen Belastungen für die Momente $\mathrm{M_y}$ und $\mathrm{M_z}$ sind von der Länge der Läuferplatte abhängig. Die bei der jeweiligen Läuferplattenlänge zulässigen Momente $\mathrm{M_{zn}}$ und $\mathrm{M_{yn}}$ werden nach folgenden Formeln berechnet:

$$S_n = S_{min} + n \cdot \Delta S$$

$$\mathrm{M_{zn}} = (\ 1 + \frac{\mathrm{S_n} - \mathrm{S_{min}}}{\mathrm{K}}\) \cdot \mathrm{M_{z\,min}}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

 M_{zn} = zulässiges Moment (Nm)

 $M_{z min} = Mindestwerte (Nm)$

M_{vn} = zulässiges Moment (Nm)

 $M_{y min} = Mindestwerte (Nm)$

 S_n = Länge der Läuferplatte (mm)

 S_{min} = Mindestlänge der Läuferplatte (mm)

ΔS = Faktor der Läuferlängenänderung

K = Konstante

Abb. 10

Тур	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Momente $\mathrm{M_{v}}$ und $\mathrm{M_{z}}$ für Lineareinheiten mit zwei Läuferplatten

Die zulässigen Belastungen für die Momente M_y und M_z hängen mit dem Wert für den Läufermittenabstand zusammen. Die beim jeweils vorhandenen Läufermittenabstand zulässigen Momente M_{yn} und M_{zn} werden mit den folgenden Formeln berechnet:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{y} = (\frac{L_{n}}{L_{min}}) \cdot M_{y \, min}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

M_v = zulässiges Moment (Nm)

M, = zulässiges Moment (Nm)

 $M_{v min} = Mindestwerte (Nm)$

 $M_{z min} = Mindestwerte (Nm)$

L_a = Läufermittenabstand (mm)

 L_{min} = Mindestwert für den Läufermittenabstand (mm)

ΔL = Faktor der Läuferlängenänderung

Abb. 11

Тур	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 4

Lebensdauer

Berechnung der Lebensdauer

Die dynamische Tragzahl C ist eine zur Berechnung der Lebensdauer verwendete, konventionelle Größe. Diese Belastung entspricht einer Nominal-Lebensdauer von 100 km. Die entsprechenden Werte für jede

Lineareinheit sind in der unten stehenden Tabelle 45 angegeben. Die Verknüpfung von berechneter Lebensdauer, dynamischer Tragzahl und äquivalenter Belastung ist durch die folgende Formel gegeben:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

 L_{km} = theoretische Lebensdauer (km) C = dynamische Tragzahl (N)

P = einwirkende äquivalente Belastung (N)

f_c = Kontaktbeiwert (s. S. 44, Tab. 5) f_i = Verwendungsbeiwert (s. Tab. 6)

f_b = Hubbeiwert (s. Abb. 14)

Abb. 12

Die äquivalente Belastung P entspricht in ihren Auswirkungen der Summe der gleichzeitig auf einen Läufer einwirkenden Kräfte und Momente. Sind diese verschiedenen Lastkomponenten bekannt, ergibt sich P aus der folgenden Gleichung:

$$P = P_{r} + (\frac{P_{a}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Abb. 13

Hierbei sind die externen Lasten als zeitlich konstant angenommen. Kurzzeitige Belastungen, die die maximalen Tragzahlen nicht überschreiten, haben keine relevanten Auswirkungen auf die Lebensdauer und können daher bei der Berechnung vernachlässigt werden.

Verwendungsbeiwert f_i

f _i	
weder Stöße noch Vibrationen, weiche, niederfrequente Richtungswechsel; saubere Betriebsbedingungen; geringe Geshwindigkeiten (<1 m/s)	1 - 1,5
leichte Vibrationen; mittlere Geschwindigkeiten; (1-2,5 m/s) und mittelhohe Frequenz der Richtungswechsel	1,5 - 2
Stöße und Vibrationen; hohe Geschwindigkeiten (>2,5 m/s) und hochfrequente Richtungswechsel; hohe Schmutzbelastung	2 - 3,5

Tab. 5

Kontaktbeiwert f

f _c	
Standard Läufer	1
Langer Läufer	0.8
Doppelter Läufer	0.8

Tab. 6

Hubbeiwert f,

Der Hubbeiwert f_h berücksichtigt bei gleicher Gesamtlaufstrecke die höhere Belastung der Laufbahnen und Rollen bei kurzen Hüben. Aus dem folgenden Diagramm sind die entsprechenden Werte zu entnehmen (bei Hüben über 1 m bleibt f_h =1):

Abb. 14

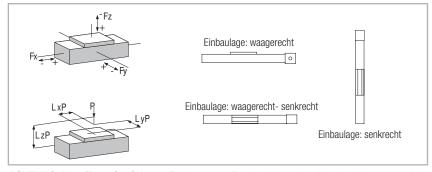
Ermittlung des Motor-Drehmoments

Das am Antriebskopf der Linearachse benötigte Drehmoment \mathbf{C}_{m} wird $\,$ mit folgender Formel berechnet:

$$C_{m} = C_{v} + (F \cdot \frac{D_{p}}{2})$$

 C_m = Drehmoment des Motors (Nm)

F = auf den Zahnriemen wirkende Kraft (N)


D_n = Teilkreis der Zahnriemenscheibe (m)

Anfragehilfe / ~

Allgemeine Daten:	Datum: Anfrage Nr.:
Firma:	Gesprächspartner:
Company:	Postleitzahl:
Tel.:	Fax:
F-Mail·	

Technische Daten:

				x-Achse	y-Achse	z-Achse
Nutzhub (inkl. Sicherheitsbereiche)		S	[mm]			
Bewegte Masse (n)		Р	[kg]			
Schwerpunktlage der Masse (n)	Richtung X	LxP	[mm]			
	Richtung Y	LyP	[mm]			
	Richtung Z	LzP	[mm]			
Zusätzliche Belastungen	Richtung (+/-)	Fx (Fy, Fz)	[N]			
Angriffspunkt der zus. Belastungen	Richtung X	Lx Fx (Fy, Fz)	[mm]			
	Richtung Y	Ly Fx (Fy, Fz)	[mm]			
	Richtung Z	Lz Fx (Fy, Fz)	[mm]			
Einbaulage (s. Skizze) (Waagerecht/waagersenkr./senkrecht)						
Max. Geschwindigkeit		V	[m/s]			
Max. Beschleunigung		a	[m/s ²]			
Positioniergenauigkeit		Δs	[mm]			
Geforderte Lebensdauer		L	[ore]			

ACHTUNG: Bitte fügen Sie Skizzen, Zeichnungen, Beschreibung des Arbeitszyklusses etc. bei.

EUROPE

ROLLON S.p.A. - ITALIEN (Hauptsitz)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON B.V. - NIEDERLANDE

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

AMERICA

ROLLON CORP. - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON LTD. - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

ROLLON GMBH - DEUTSCHLAND

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.P.A.-RUSSLAND (Handelsvertr.)

117105, Moscow, Varshavskove shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON - SÜDAMERIKA (Handelsvertr.)

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645

www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON S.A.R.L. - FRANKREICH

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON GMBH - UK (Handelsvertr.)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR

Phone: +44 (0) 1234964024

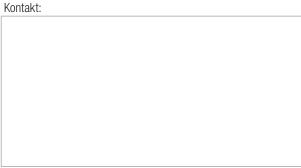
www.rollon.uk.com - info@rollon.uk.com

ROLLON INDIA PVT. LTD.

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

ROLLON S.P.A. - JAPAN

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp


Bitte beachten Sie auch unsere weiteren Produktreihen

Die Adressen unserer weltweiten Vertriebspartner finden Sie auch auf unserer Webseite www.rollon.com