Produktübersicht

ARC/HRC/ERC Produktübersicht

cpc Linearführungen sind ausgelegt mit vier Laufbahnen in O-Anordnung. Die Präzisions-Stahlkugeln übertragen eingeleitete Kräfte unter einem Kontaktwinkel von 45 Grad (siehe nachfolgende Skizze). Im Vergleich zur X-Anordung ist durch die O-Anordnung eine höhere Torsionssteifigkeit gegeben. Um bei Tragzahlen und Steifigkeiten ein Optimum zu erreichen wurden trotz beschränkter Platzverhältnisse die höchstmögliche Anzahl an größtmöglichen Stahlkugeln eingesetzt.

Dadurch sind hohe statische und dynamische Momentbelastungen möglich, es gelten gleiche Tragzahlen für alle Belastungsrichtungen bei kompaktem Design.

Finheit: mm

		LITTICITE TETRICIT
Baugröße	Lo	Hc
15	12.4	9.35
20	16.4	12.5
25	19.5	14.5
30	24.0	17
35	30.4	19.5
45	38.2	24
55	43.1	28.5

F = Mr/Lo(Lx)

Verstärktes Niro – Stirnblech zur Steigerung der Führungswageneigenschaften

- Standardmäßig verstärkte Stahlabdeckungen an den Stirnseiten.
- Erhöhung der Steifigkeit in X-Achsen Richtung

Ökologisches Schmiersystem (Eco-System):

- Das eingebettete Schmierreservoir versorgt die Wälzkörper direkt mit Schmiermittel. Durch diese Funktion können die Schmierintervalle erheblich verlängert werden. Bei Kurzhubeinsatz ist das Eco-System besonders wirksam.
 - Endabdeckungen:
 - Nachschmierung von allen Seiten möglich.

■Standardmäßig im Führungswagen enthalten

- Das eingebettete Schmierreservoir versorat die Wälzkörper direkt mit Schmiermittel. Durch diese Funktion können die Schmierintervalle erheblich verlängert werden.
- besonders wirksam.
- Hohe statische und dynamische Momentbelastungen möglich.

Kugelkette:

Ruhiger Ablauf

■ Patentiertes Design

- Führungsschienen sind sowohl von oben (Schraubenkopfsenkung) als auch von unten (Gewinde) verschraubbar.
- Spezielle Oberflächenbeschichtungen sind möglich.

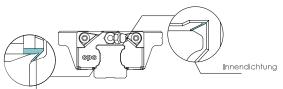
Bei Kurzhubeinsatz ist das Eco-System

■ Hohe Steifigkeit. ■ Exzellente dynamische Eigenschaften: Vmax > 10 m/s, amax >450m/s².

Gleiche Tragzahlen für alle Belastungsrichtungen.

■ Sehr leise

Produktspezifikationen (Standard)


Abdichtung

Innendichtuna

Die Doppellippendichtung vermeidet das Eindringen von Schmutzpartikeln und verhindert den Austritt von Schmiermittel.

Bodendichtung

Die untere Dichtleiste verhindert ebenfalls das Eindringen von Schmutzpartikeln und vermeidet den Austritt des Schmiermittels. Durch diese beiden Längsdichtungen und der stirnseitigen Dichtung besteht eine Rundum-Abdichtung des Führungswagens.

Bodendichtung

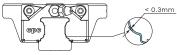
Enddichtuna

Die stirnseitige Doppellippen-Dichtung schützt stirnseitig vor dem Eindringen von Fremdpartikeln und stellt sicher, dass kein Schmiermittel aus dem Führungswagen austreten kann. Die Flexibilität und die Charakteristik des technischen Kunststoffmaterials TPU hat eine bessere Reibbeständigkeit und Reibfähigkeit, sowie einen höhere Spannungsriss-Schutz gegenüber den herkömmlichen NBR-Kunststoffen.

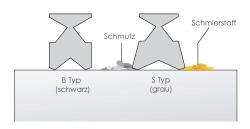
Standarddichtung (S)

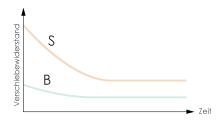
Die S-Dichtung hat vorgespannten Kontakt zur Oberfläche der Schiene, dadurch entsteht ein besserer Schutz gegen das Eindringen von Fremdpartikeln in den Führungswagen und gegen das Austreten von Schmiermittel. cpc empfiehlt den Einsatz dieser Dichtungsvariante (S-Typ) für Applikationen mit starker Verschmutzung in der Umgebung der Führung, zum Beispiel beim Einsatz in Holzbearbeitungsanlagen, etc. Der Verschiebewiderstand ist höher als bei den Leichtlaufdichtungen (B-Typ).

Leichtlaufdichtung (B)


Einsetzbar für die meisten Bedingungen mit leichtem Berührungskontakt auf der Schiene und beidseitiger Abstreiferfunktion mit wenig Verschiebewiderstand.

Vergleich des Verschiebewiderstandes der beiden Dichtungstypen


Der Verschiebewiderstand ist am größten bei neuen Linearführungen. Nach kurzer Einlaufzeit reduziert sich der Verschiebewiderstand und bleibt auf einem konstanten Level.


Verstärktes Niro-Stirnblech

Die stirnseitigen Niro-Bleche in L-Form werden mit Schrauben stirnseitig und von unten am Führungswagen befestigt. Die stirnseitigen Niro-Bleche verstärken die Kuaelumlenkung, schützen die Kunststoffumlenkung vor Beschädigung und dienen gleichzeitig als Abstreifer für grobe Späne. Der Spalt zwischen der Führungsschiene und dem Stirnblech ist < 0.3 mm.

Durchschnittliche Reibung

In der unten stehenden Tabelle sind durchschnittliche Reibwerte der Laufwagen ohne Einfluss von Schmiermittel dargestellt.

		e		

	ARC/HRC/ERC								
	Reibwert der Kuge l n				J L	Enddichtun	g (2 Seiten)		
Wagen	Vorspannklas				Bodendichtung + Innendichtung	S-Typ	В-Тур		
Тур	VC	V0	V1	V2		Standard	Leicht l auf		
15MN/FN	0.30	0.65	0.85	1.10	1.5	2.0	0.5		
20MN/FN	0.40	0.75	1.40	1.60	2.0	2.5	1.0		
25MN/FN	0.60	0.95	1.30	1.95	2.5	3.0	1.5		
30MN/FN	0.55	1.10	2.00	3.10	3.0	5.0	2.0		
35MN/FN	0.65	1.25	2.50	3.25	3.0	8.0	3.0		
45MN/FN	0.85	2.10	2.80	4.00	4.0	11.0	4.0		

Einheit: N

	ARC/HRC/ERC								
	F	Reibwert d	er Kuge l n			Enddichtur	g (2 Seiten)		
Wagen		Vorspa	nnk l asse		Bodendichtung + Innendichtung	S - Type	B - Type		
Тур	VC	V0	V1	V2	Interfacemong	Standard	Leicht l auf		
15MS/FS	0.30	0.60	0.80	1.00	1.5	2.0	0.5		
20MS/FS	0.40	0.70	1.10	1.40	2.0	2.5	1.0		
25MS/FS	0.50	0.90	1.20	1.80	2.5	3.0	1.5		
30MS/FS	0.50	1.00	1.80	2.30	3.0	5.0	2.0		

	Limier. 14								
	ARC/HRC/ERC								
	Reibwert der Kuge l n					Enddichtur	g (2 Seiten)		
Wagen		Vorspa	nnklasse		Bodendichtung + Innendichtung	S-Type	B-Type		
Тур	VC	V0	V1	V2	Intertalement	Standard	Leicht l auf		
15ML/FL	0.40	0.70	0.90	1.40	1.5	2.0	0.5		
20ML/FL	0.50	0.80	1.60	1.80	2.0	2.5	1.0		
25ML/FL	0.70	1.20	1.80	2.00	2.5	3.0	1.5		
30ML/FL	0.80	1.40	2.20	2.80	3.0	5.0	2.0		
35ML/FL	0.90	1.60	2.70	3.50	3.0	8.0	3.0		
45ML/FL	1.00	2.30	3.50	4.55	4.0	11.0	4.0		

Beispiel:

1. ARC25MN-SZ-V1-N-BLOCK

Verschiebewiderstand = 1.3+2.5+3 = 6.8N

2. HRC30FL-BZ-V0-P-BLOCK

Verschiebewiderstand = 1.4+3+2 = 6.4N

Reibwert der Kugeln +

(Bodendichtung + Innendichtung)

+ Enddichtung (2 Seiten)

= Verschiebwiderstand (ohne Schmierstoff)

Produktspezifikationen

(Standard)

Sägespäne Test

<u>Testmaterial</u>

Dieser Test wurde mit von unten verschraubbaren Schienen und Laufwagen mit S-Dichtung und Fettschmierung, alternativ mit SZ-Dichtung (Schmierpad) und Ölschmierung, aufgebaut:

Schiene

Schiene von unten verschraubt (ARU/HRU)

Laufwagen

- 1. Mit Standard (S) Dichtung und mit Fett geschmiert
- 2. Mit Standard (S) Dichtung, Schmierpad (Z) und mit Öl geschmiert

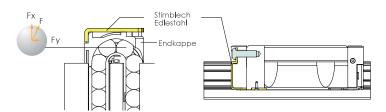
Testbedingungen

Hub= 600mm Testdistanz = 30m

Testergebnis

	THE PERSON NAMED IN
kufnahme von unten (Ö l)	Aufnahme von unten (Fett)

- Sägespäne erreichen nicht die Kugellaufbahn im Wagen.
- 2. Sägespäne erreichen nicht das Innere des Laufwagen.


Augenmerk Sägespäne er-Sägespäne erreichen das Inne reichen die Kugel des Wager laufbahn Mode ARU Schiene SZ Wagen nein nein Ö**l** Schmierung ARU Schiene S Wagen nein nein Fett Schmierung

Beim Einsatz von ARC/HRC-Schienen unter ähnlichen Bedingungen mit Abdeckkappen nehmen Sie bitte zur technischen Klärung Kontakt zu **cpc** Europa auf.

Edelstahl Stirnblech (Patentiert)

Verstärktes Stirnblech aus Edelstahl

Die stirnseitigen Niro-Bleche in L-Form werden mit Schrauben stirnseitig und von unten am Führungswagen befestigt, Die stirnseitigen Niro-Bleche verstärken die Kugelumlenkung, schützen die Kunststoffumlenkung vor Beschädigung und dienen gleichzeitig als Abstreifer für grobe Späne. Der Spalt zwischen der Führungsschiene und dem Stirnblech ist < 0,3 mm.

Patentiertes Stirnblech macht hohe Geschwindigkeiten möglich

Durch die zusätzlich zur Schraubenverbindung angebrachte formschlüssige Verbindung des Niro-Stirnblechs an der Unterseite des Führungswagens sind höhere Verfahrgeschwindigkeiten möglich.

Mehrere Schmierpositionen möglich

Hier eine Übersicht über die drei Möglichkeiten die Wagen nachzuschmieren. Links dargestellt die Standardvariante "Schmierung stimseitig", in der Mitte sieht man die Variante "Schmierung seitlich", auf dem rechten Bild ist die Alternative "Schmierung von oben" (inkl. O-Ring) zu sehen.

Produktspezifikationen

(Option)

Führungswagen mit Kugelkette

Die Kette (Käfig) vermeidet den direkten, punktförmigen, gegenseitigen Kontakt der Kugeln zueinander. Beim Führungswagen ohne Kette entstehen im gesamten Bereich der Kugelfückführungen gegenläufige Drehbewegungen und Gleitreibungszustände, zum einen am Kontaktpunkt der Kugeln selbst, aber auch an den angrenzenden Rücklaufzonen. Diese negativen Eigenschaften bewirken eine erhöhte Reibung und ein erhöhtes Laufgeräusch des Führungswagens. Die Kugelkeite entspannt die komplette Rückführung der Kugelreihen und führt zu einem wesentlich gleichmäßigeren Ablauf des Führungswagens. Das hin und wieder auftretende Haken des Führungswagens, insbesondere bei Führungswagen mit Vorspannung ohne Kette, wird durch den Einsatz der Kette komplett vermieden.

mit Kette

Beim Einsatz der Kette entsteht kein direkter Kontakt zwischen den Kugeln. Die Kugeln liegen einzeln eingebettet in den Kettengliedern.

ohne Kette

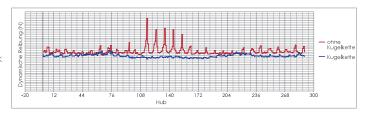
Bei dem Führungswagen ohne Kette besteht kein Puffer zwischen den Kugeln. Die Folgen sind erhöhte Reibung und erhöhtes Laufgeräusch.

Belastungstest

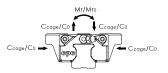
Bedingungen Modell: ARC25MN SZC V1H Geschwindigkeit: 1m/sec Belastungskapazítät: 7.44kN(0.3C)

Dynamische Tragzahl C100;24.8kN StrecKe: 960mm Vorspannung;0.05C

Lebensdauer $(\frac{C}{P})^3 \times 100 \text{km} = (\frac{C}{0.05C + 0.3C})^3 \times 100 \text{km} = 2332 \text{km}$



Nach dem Test, Fettreste und keine Auffälligkeiten an Kuge**l**n und Fett


Gleittest

Modell: ARC25MN-SZ-V1-N-BLOCK Geschwindigkeit: 10 mm/sec

Belastungsfähigkeit und Lebensdauer

Die Berechnung der Lebensdauer kann nach den auf Seite 14 vorgegebenen Formeln errechnet werden. Beim Einsatz der Führungswagen mit Kugelkeit eist eine Kugel im Tragbereich weniger im Einsatz als bei den Führungswagen ohne Kugelkeite. Durch diese Tatsache muss der Tragzahlwert Iheoretisch reduziert werden. Bei Lebensdaueruntersuchungen von Führungswagen mit Kugelkette unter Laborbedingungen hat sich allerdings gezeigt, dass die erreichten Lebensdauerwerte im Vergleich zu Führungswagen ohne Kugelkette nicht reduziert auftraten. Der positive Effekt der Kettenglieder wie z. B. entspannte Rücklaufzone, keine Kontaktreibung der Kugeln zueinander und auch die Schmierfettverteilung gleichen den Verlust der einen Tragkugel komplett aus.

Dynamische Tragzahl

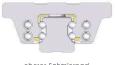
Die Tabelle rechts zeigt den Wert Ccage und Cıso verschiedener Laufwagentypen. (laut ISO-14728 Verordnung)

Modell		C _{BO} (kN)	C _{cage} (kN)
4.00.4.01.0	15	9.4	11.8
ARC - MN C ARC - FN C	20	15.4	22.3
HRC-MN C	25	22.4	33.6
HRC-FN C	30	31.0	46.5
ERC-MN C	35	43.7	65.6
	45	67.6	101.4
	15	12.5	15.6
ARC-ML C	20	18.9	27.4
HRC-ML C	25	28.5	42.8
HRC-FL C	30	38.0	57.0
ERC-ML C	35	50.6	75.9
	45	86.2	129.3
	15	7.1	8.9
arc-ms c	20	11.6	16.8
ARC-FS C	25	16.8	25.2
ERC-MS C	30	21.3	32.0

Statische Tragzahl + statischer Moment

Die Ketten-Variante von ARC/HRC/ERC erhöht den Abstand zwischen den Kugeln auf der Auflagefläche. Dadurch verringert sich der Wert der statistischen Tragzahl Co und des statistischen Moments Mro, Mpo und Myo.

		Statische Tragzahl (kN)	Statischer Moment (Nm)			
Modell		Co	Mro	Мро	Myo	
	15	16.2	130	95	95	
ARC-MN C ARC-FN C	20	25.7	275	200	200	
HRC-MN C	25	36.4	465	340	340	
HRC-FN C	30	49.6	780	530	530	
ERC-MN C	35	70.2	1575	1010	1010	
	45	102.8	2955	1775	1775	
	15	24.3	195	215	215	
ARC-ML C	20	34.3	370	350	350	
HRC-ML C	25	51.6	655	640	640	
HRC-FL C	30	66.1	1040	900	900	
ERC-ML C	35	94.7	1940	1575	1575	
	45	159.7	4185	3280	3280	
100 115 0	15	10.8	85	45	45	
ARC-MS C ARC-FS C ERC-MS C	20	17.1	185	85	85	
	25	24.3	310	145	145	
	30	28.9	455	205	205	


Produktspezifikationen

(Option)

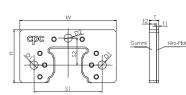
(Bestell-Code: Z) (ARC/HRC) Schmiersystem

Integriertes Schmierreservoir

Die integrierten Schmierpads haben direkten Kontakt zu den Kugeln. Dadurch wird das Schmierintervall erheblich verlängert. Die Abmessungen der Laufwagen ändern sich dadurch nicht. Vor allem bei Kurzhubeinsatz ist unser Eco-System besonders wirkungsvoll.

Vorsatzdichtung mit Niro-Metallplatte (NBR)

(Bestell-Code: SN) (ARC/HRC/ARR/HRR/LRR)


Die Vorsatzdichtung wird empfohlen in Bereichen mit sehr schmutziger Umgebung, wie z.B. Holzbearbeitungsindustrie, Papierindustrie, beim Einsatz von Kühlschmiermittel und generell bei großer Verschmutzung.

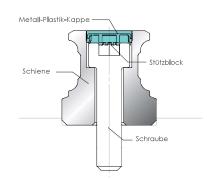
Abmessungen

	Einheit: mm												
Größe	Ä	ußere	e Abn	nessu	ngen		Bohrlo	ch		Schrauben			
	Т	†1	t2	W	Н	S1	S2	DI	D2	N1	N2	Ln	
15	4	1	3	33	20.3	25	10.2	3.5	3.5	M3x0.35	M3x0.5	9	
20	4	1	3	41	22.5	29	11.5	3.5	3.5	M3x0.35	M3x0.5	9	
25	5.2	1.2	4	47	26.5	36.5	13.5	3.5	6.5	M3x0.5	M6x0.75	12	
30	6	1.5	4.5	58	34.2	42.5	17.5	4.5	6.5	M4x0.5	M6x0.75	12	
35	6	1.5	4.5	68	39.3	50	20.5	4.5	6.5	M4x0.5	M6x0.75	12	
45	6	1.5	4.5	84	49.6	65	24.9	4.5	10	M4x0.5	PT1/8	15	

Montageanleitung

- 1. Führungswagen auf die Schiene aufziehen. (s. Seite 48)
- 2. Die Distanzhülsen sollten in der Dichtung montiert sein. Wenn nicht, bitte montieren.
- 3. Die Vorsatzdichtung von der Stirnseite der Schiene her bis zum Wagen aufschieben. Die Dichtung an den Wagen schrauben. Bei der Montage der Vorsatzdichtung darauf achten, dass diese nicht einseitig verspannt wird. Lassen Sie der Dichtung die Freiheit sich selbst optimal auszurichten.
- 4. Den Wagen auf einen gleichmäßigen, ruhigen Ablauf testen. Die stirnseitige Metallplatte darf keinen Kontakt zur Schiene haben. Auf Wunsch liefern wir die Vorsatzdichtung auch vormontiert.

Schmiernippel Vorsatzdichtun Ø


Metall-Plastik-Kappe (patentiertes Design)

(Bestell-Code: MPC)

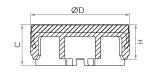
Eigenschaften Abdeckkappe

Vereinfachte Handhabung

- Der obere Teil der Kappe aus Edelstahl verhindert, dass scharfe Fremdkörper in die Bohrlöcher gelangen, die die Enddichtungen beschädigen könnten.
- Der untere Teil der Kappe ist aus Kunststoff und kann direkt auf der Schienemontiert werden, ohne dass das Bohrloch nachbearbeitet werden muss.

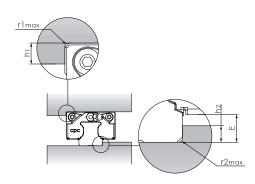
Reibungslose Installation der Kappe

Bei herkömmlichen Abdeckkappen kann während der Montage die Einbautiefe nur unzureichend beeinflusst werden, dadurch werden sie evtl. zu tief gesetzt. In den Unebenheiten können sich Verschmutzungen ansammeln. CDC Abdeckkappen wurden mit einem besonderen Stützblock entworfen. Dieser stabilisiert die Kappe und verhindert somit einen zu tiefen Sitz in der Senkbohrung.



Kappe vor dem Einsch**l**agen (8 Stützblöcke werden deformiert (Kunststoff-Stütze)

Abmessungen

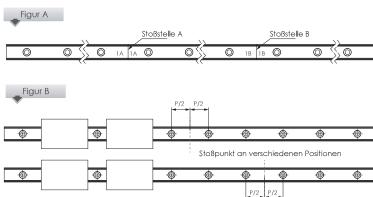


Größe	Schraube	äußerer Ø D	Н	С	Schiene
A4	M4	7.7	3.6	1.7	AR15, WRC21/15
A5	M5	9.7	3.4	4.0	AR20
A6	M6	11.3	2.9	3.5	AR25
A8	M8	14.3	3.9	4.5	AR30, AR35
A12	M12	20.4	5.0	5.6	AR45
A8-R	M8	14.3	8.0	9.5	ARR35

Einbauhinweise

Maße für Anschlagkante

Um eine präzise Montage der Linearführung auf der Auflagefläche sicherzustellen empfiehlt cpc das Fixieren an eine Anschlagkante oder in einer Anlagenut. Bitte berücksichtigen Sie die untenstehende Tabelle für deren Bemaßung.


Einheit: mm								
ARC/HRC/ERC								
Туре	r1max	r2max	hi	h2	Е			
15	0.5	0.5	4.0	2.5	3.3			
20	0.5	0.5	5.0	4.0	5.0			
25	1.0	1.0	5.0	5.0	6.0			
30	1.0	1.0	6.0	5.5	6.6			
35	1.0	1.0	6.0	6.5	7.6			
45	1.0	1.0	8.0	8.0	9.3			
55	1.5	1.5	10.0	10.0	12.0			

WRC								
Type	r1max	г2тах	hı	h ₂	Е			
21/15	0.4	0.4	5.0	2.0	2.7			
27/20	0.4	0.4	5.0	3.0	3.5			

Stoßschienen

Die Standardlänge der Führungsschienen beträgt 4000 mm. Längere Führungsschienen können stumpf gestoßen werden. Die Stoßstellen werden entsprechend dem nachfolgenden Schema gekennzeichnet.

- 1. Um die Schienen richtig zu montieren folgen Sie bitte den Beschriftungen. (Figur A)
- Sind zwei Schienen auf einer Achse parallel montiert sollten die Stoßpunkte unterschiedlich gesetzt werden.
 Eine Beeinträchtigung der Genauigkeit wird somit vermieden. (Figur B)
- 3. Bitte beachten Sie die Schrauben-Anzugsmomente auf Seite 12. Die Montage sollte von innen nach außen erfolgen.

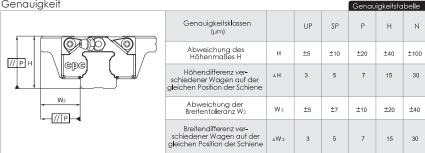
Technische Information

Schrauben-Anzugsmomente(Nm)

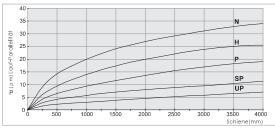
Schraubenklasse 12.9 Legierung Stahlschraube	Stah l	Gusseisen	Nichteisen- metall
МЗ	2.0	1.3	1.0
M4	4.1	2.7	2.1
M5	8.8	5.9	4.4
M6	13.7	9.2	6.9
M8	30	20	1.5
M10	68	45	33
M12	118	78	59
M14	157	105	78
M16	196	131	98

Vorspannung und Spiel Die ARC/HRC/ERC Linearführungen gibt es in 4 verschiedenen Vorspannklassen VC, V0, V1, V2.

	ARC/WRC									
					Spie	l (µm	ı)			
Vorspann-	Beschrei-	Vorspann-	15	20	0.5	00	0.5	4.5		Einsatzbereich
k l asse	bung	wert	WRC21/15	WRC27/20	25	30	35	45	55	
VC	Spiel	0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	reibungslose Bewegung geringe Reibung
V0	leichte Vorspannung	0.02C	+0~-4	+0~-5	+0~-6	+0~-7	+0~-8	+0~-10	+0~-12	für präzise Anwendung, reibungslose Bewegung
VI	mitt l ere Vorspannung	0.05C	-4~-10	-5~-12	-6~-15	- 7~ - 18	-8~-20	-10~-24	-12~-28	hohe Steifigkeit, Präzi- sion, hohe Be l astung
V2	starke Vorspannung	0.08C	-10~-16	-12~-18	-15~-23	-18~-27	-20~-31	-24~-36	-28~-45	sehr hohe Steifigkeit Präzision, sehr hohe Be l astung


	HRC/ERC									
Vorspann-	Beschrei-	Vorspann-			Spie	el (µm	1)			Einsatzbereich
k l asse	bung	wert	15	20	25	30	35	45	55	EINSCIZOCICICIT
VC	Spiel	0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	+5~+0	reibungslose Bewegung geringe Reibung
VO	leichte Vorspannung	0.02C	+0~-4	+0~-5	+0~-6	+0~-7	+0~-8	+0~-10	+0~-12	für präzise Anwendung, reibungslose Bewegung
V1	mitt l ere Vorspannung	0.08C	-4~-12	-5~-14	-6~-16	-7~-19	-8~-22	-10~-25	-12~-29	hohe Steifigkeit, Präzi- sion, hohe Be l astung
V2	starke Vorspannung	0.13C	-11~-19	-14~-23	-16~-26	-19~-31	-22~-35	-25~-40	-29~-46	sehr hohe Steifigkeit Präzision, sehr hohe Belastung

Technische Informationen


Genauigkeit

Die ARC/HRC/ERC/WRC Linearführungen gibt es in 5 verschiedenen Genauigkeitsklassen: N, H, P, SP und UP. Für die Konstruktion kann, abhängig von der Maschinenanwendung, aus den oben genannten Genauigkeitsklassen gewählt werden.

Genauigkeit

Lauf-Parallelität

Anwendungen

Genauig- keitsklasse	Transport- Technik	Bearbeitungs- anlagen	Präzisions- Bearbeitungs- Anlagen	Prüf- und Messeinrichtungen
N	•	•		
Н	•	•	•	
Р		•	•	•
SP			•	•
UP				•
Beispiele	Hand i ngs-Systeme Verpackungsanlagen Montage-Automaten	Hotzbearbeitungs- Anlagen Stanz-Maschinen Spritzguss-Anlagen	Dre-/Fräs-Maschinen Schleif-Maschinen Erodier-Maschinen (EDM) CNC-Bearbeitungs- center	3D-Mess-Maschinen Mess- und Prüfanlagen

Lebensdauerberechnungen

Nominelle Lebensdauer in Meter

$$L = \left(\frac{C}{F}\right)^3 * 10^5 \text{ m}$$

Nominelle Lebensdauer in Stunden

$$L_h = \frac{L}{2 * s_{Hub} * n_{Hub} * 60}$$

Hinweis zur nominellen Lebensdauer

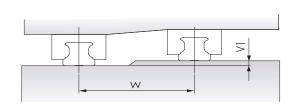
Die errechnete nominelle Lebensdauer entspricht einer 90 % Erlebenswahrscheinlichkeit bei unter gleichen Bedingungen eingesetzten Wälzlagern. Die 90 % Erlebenswahrscheinlichkeit ist ein statistisch erreichter Wert aus einer Vielzahl von praktischen Lebensdauertests.

Die Formel für die nominelle Lebensdauerberechnung setzt eine konstante Geschwindigkeit voraus. Die Erlebenswahrscheinlichkeit setzt voraus, dass die Führungswagenlängsbewegung mindestens das 1,5-fache der Führungswagenlänge ist. Bei kürzeren Verfahrwegen bitte Rücksprache mit CPC Europa halten. Wird eine höhere Erlebenswahrscheinlichkeit angestrebt, muss der Faktor Cr berücksichtigt wer-

Er l ebenswahr		
(%)	L _{nr}	Cr
90	L _{10r}	1
95	L _{5r}	0,62
96	L _{4r}	0,53
97	L _{3r}	0,44
98	L ₂	0,33
99	Lir	0,21

Nominelle Lebensdauer in Meter

$$L_{nr} = C_r * \left(\frac{C}{F}\right)^3 * 10^5 \text{ m}$$


Nominelle Lebensdauer in Stunden

$$L_{hr} = \frac{L_{nr}}{2 * s_{Hub} * n_{Hub} * 60}$$

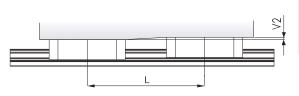
Zulässige Höhenabweichung der Aufspannfläche

Querrichtung

Die zulässige Höhenabweichung in Querrichtung wird bestimmt anhand der nachfolgenden Formel.

$V1 = W \times D_1$

V1 = Zulässige Höhenabweichung


W = Abstand der Führungsschienen

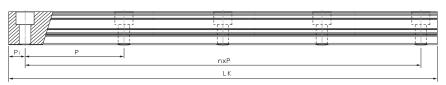
D₁ = Berechnungsfaktor

Führungswagen ARC / HRC / ERC	Berechnungsfaktor D_1				
Standard FN / MN Lang FL / ML	Spiel (VC)	Übergang (V0)	Vorspannung (0,05 C)	Vorspannung (0,08 C)	Vorspannung (0,013 C)
Kurz FS / MS	4.5 x 10 ⁻⁴	4.0 x 10 ⁻⁴	2.3 x 10 ⁻⁴	2.0 x 10 ⁻⁴	1.5 x 10 ⁻⁴

Längsrichtung

Die zulässige Höhenabweichung in Längsrichtung wird bestimmt anhand der nachfolgenden Formel.

V2 = Zu**l**ässige Höhenabweichung


L = Abstand der Führungswagen

D₂ = Berechnungsfaktor

	Berechnungsfaktor D_2						
Führungswagen ARC / HRC / ERC		Führungswagen l änge					
	Standard	Kurz	Lang				
Spiel (VC)	4.5 x 10 ⁻⁴	6.3 x 10 ⁻⁴	3.8 x 10⁻⁴				
Übergang (V0)	4.0 x 10 ⁻⁴	5.8 × 10 ⁻⁴	3.2 x 10 ⁻⁴				
Vorspannung (0,05 C)	2.3 x 10 ⁻⁴	3.9 x 10 ⁻⁴	2.0 x 10 ⁻⁴				
Vorspannung (0,08 C)	2.0 x 10 ⁻⁴		1.7 x 10 ⁻⁴				
Vorspannung (0,013 C)	1.5 x 10 ⁻⁴		1.3 x 10⁻⁴				

Bestellhinweise

Bestimmung der Führungsschienenlänge und Bohrungsendabstände

Toleranzen: $P_1 \pm 0.5 \text{ mm}$ L = $\pm 1.0 \text{ mm}$

Größe (mm)	Tei l ung (P) (mm)	Senkungs - ø Schrauben- kopf
15	60	7,5
20	60	9,5
25	60	11
30	80	14
35	80	14
45	105	20
55	120	24

Rechenbeispiel

Führungsschiene Gr. 25; Wunschlänge 1720 mm Berechnung:

LK / P	1720 / 60 =	28,66
Abrunden		28
Anzah l Bohrungen		29
Länge aller ganzen Bohrungs- abstände	28 × 60 =	1680 mm
	(1720 - 1680) / 2	20 mm

Größe			
Führungsschiene: AR	/HR25-N-17	20-20-20	
Qualitätsklasse	Führungs- schienen- länge	P ₁	P ₂

 P_1 und P_2 sollten nicht kleiner als der 1/2 Senkungsdurchmesser plus 2 mm sein. Das Beispiel zeigt eine symmetrische Verteilung der Abstände P_1 und P_2 .

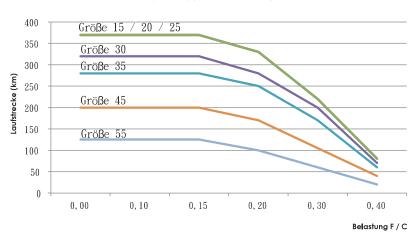
Eine asysmmetrische Verteilung ist ebenfalls möglich.

Wenn P_1 und P_2 nicht vorgegeben sind, liefert $\mbox{\bf cpc}$ symmetrische Endabstände.

Legende:

Länge der Führungsschiene nach Kundenwunsch LK

Bohrungsabstand


Pι Abstand Schienenanfang zur ersten Bohrung

Abstand Schienenende zur letzten Bohrung

Schmierung

Schmierintervalle

Nachschmierintervalle für Standard-Kugelführung (ohne Schmiereinheit)

Nachschmiermengen für Standard - Führungswagen

Standard - Führungswagen						
Größe		Nachschmiermenge in mm³				
Grobe	Type FS / MS	Type FN / MN	Type FL / ML			
15	1500	1750	2000			
20	1500	1750	2000			
25	1800	2200	2600			
30	2000	2500	3000			
35	2000	2500	3000			
45	3000	3500	4000			
55	3500	4000	4500			

Die Führungswagen werden mit einer Grundbefettung ausgeliefert um einen Notlauf sicherzustellen. Bei Inbetriebnahme müssen die Führungswagen nachbefettet werden.

Montagehinweise

Standard-Führungsschienen

Handling der Führungsschienen

Die Führungsschienen dürfen beim Auspacken nicht beschädigt werden. Insbesondere beim Entfermen der Verpackungsfolle besteht die Gefahr, dass durch schaffe Werkzeuge die Schiene zerkratzt werden könnten. Bei Bedarf können spezielle Follenöffner zur Verfügung gestellt werden. Obwohl das gehärtete Seitenprofil sehr unempfindlich ist, sollten die Führungsschienen um Beschädigungen zu vermeiden nicht gegeneinander gestoßen werden. Lange Führungsschienen sind mit ausgeglichener Gewichtsverteilung zu transportieren. Bei unsachgemäßem Handling besteht die Gefahr von Knicken und Rissen. Bitte während des Handlings Sicherheitsschuhe tragen.

Standard Führungswagen

Handling der Führungswagen

Führungswagen nicht fallen lassen. Beim Auspacken des Führungswagen darauf achthen, das die Transportsicherung bzw. Montagehilfe nicht aus den Führungswagen herausgleitet. Achtung Kugelverfust! Beschädigungen beim Auspacken unbedingt vermeiden. Es wird empfohlen mit Handschuhen und Schutzbrillen zu arbeiten und Sicherheitsschuhe zu tragen. Es muss auf äußerste Sauberkeit beim Handling mit den Führungswagen geachtet werden. Eine Verschmutzung der Kugeln und Laufbahnen hat erheblichen Einfluss auf Funktion und Lebensdauer.

Führungswagenmontage

Bei der Führungswagenmontage auf die Führungsschiene ist unbedingt die Transportsicherung bzw. Montagehilfe zu verwenden. Die Führungsschiene wird speziell angefast um die stirnseitigen Dichtungen des Führunswagens beim Aufschieben nicht zu beschädigen.

Wird der Führungswagen wieder von der Schiene demontiert, muss unbedingt die Transportsicherung bzw. Montagehilfe wieder zur Führungswagenaufnahme verwendet werden.

Verschraubung des Wagen

Die Befestigungsschraube für den Führungswagen mit nachfolgendem Drehmoment (Nm) anziehen.

Schraube	Schrauben 8.8	Schrauben 10.9	Schrauben 12.9
M4	2,7	3,8	4,6
M5	5,5	8	9,5
M6	9,5	13	16
M8	23	32	39
M10	46	64	77
M12	80	110	135
M14	125	180	215
M16	195	275	330

Empfhohlene Schraubenlänge

Größe	A1	A2	А3
15	M4x12	M5x12	M4x12
20	M5x16	M6x16	M5x16
25	M6x20	M8x20	M6x18
30	M8x25	M10x20	M8x20
35	M8x25	M10x25	M8x25
45	M10x30	M12x30	M10x30
55	M12x40	M14x40	M12x35

A1 = Flansch-Verschraubung von oben

A2 = Flansch-Verschraubung von unten

A3 = Standard-Wagen Verschraubung von oben

Montage der Kunststoffabdeckkappen

Bei Anwendung der Führungsschiene mit Schraubenkopfsenkung empfehlen wir, nach der Komplettmontage die Schraubenkopfsenkungen mit Kunststoffkappen zu verschließen. Die Kappen vermeiden das Eindringen von Schmutz über die Schraubenkopfsenkung und verbessern das Ablaufverhalten. Die Kunstststoffkappen sollten mit einer flachen Holzleiste bündig zur Schienenkopffäche eingesenkt werden.

